• Title/Summary/Keyword: Electric vehicle

Search Result 2,210, Processing Time 0.03 seconds

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.

Modeling of the dynamic behavior of a 12-V automotive lead-acid battery (12V 차량용 납축전지의 동적 거동 모델링)

  • Kim, Sung Tae;Lee, Jeong Bin;Kim, Ui Seong;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2013
  • For the optimal design of the vehicle electric system, it is important to have a reliable modeling tool to predict the dynamic behavior of the automotive battery. In this work, a one-dimensional modeling was carried-out to predict the dynamic behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experiment data of the dynamic behaviors of the lead-acid batteries of two different capacities that were mounted on the automobiles manufactured by Hyundai Motor Company. The discharge behaviors were measured with various discharge rates of C/3, C/5, C/10, C/20 and combination. And dynamic behaviors of charge and discharge were measured. The voltage curves from the experiment and simulation were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, and the current density within the electrodes could be predicted as a function of charge and discharge time.

Development of the Wide Passenger Door System of EMU based on the High Precision Stop Performance (정위치 정차 성능 기반 전동차 광폭 출입문 시스템 개발 연구)

  • Kim, Moosun;Hong, Jae-Sung;Kim, Jungtai;Jang, Dong Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.618-624
    • /
    • 2017
  • In Seoul and most metropolitan cities, urban trains are delayed due to high congestion during commute times. The delay effect of passengers boarding and disembarking is also significant. In this study, a wide passenger door system was developed as a way to improve the scheduled speed of urban trains by decreasing the passengers' flow time. The door size was defined experimentally to shorten the entrance time. The optimum door size was also determined to improve the stop precision performance of the train while considering the interference effect with peripheral devices. Because the change in door size changes the structural characteristics of the vehicle, the structural stability of a train was analyzed numerically. A prototype of the wide door system was made, and the proposed design was verified using functional and endurance tests. The systematic development process can be used as design data for door size definition and system production when applying a wide door to improve the scheduled speed.

Analytical Study of Railroad Bridge for Maglev Propulsion Train with Dynamical Influence Variable (동적영향변수를 통한 자기부상열차용 철도교의 해석적 연구)

  • Yoo, Yi-Seul;Park, Won-Chan;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.532-542
    • /
    • 2018
  • Because maglev trains have a propulsion and absorption force without contact with the rails, they can drive safely at high-speed with little oscillation. Recently, test model of a maglev propulsion train was produced and operated, and has since been chosen as a national growth industry in South Korea; there have been many studies and considerable investment in these fields. This study examined the dynamic responses due to bridge-maglev train interaction and basic material to design bridges for maglev trains travelling at high-speed. Depending on the major factors affecting the dynamic effects, the scope of this study was restricted to the relationship between dynamic responses. A concrete box girder was chosen as a bridge model and injured train and rail types in domestic production were selected as the moving train load and guideway analysis model, respectively. From the analysis results, the natural frequency of a bridge for a maglev train, which has a deflection limit L/2000, was higher than those of bridges for general trains. The dynamic responses of the girder of the bridge for a maglev train showed a substantial increase in proportion to the velocities of the moving train like other general bridge cases. Maximum dynamic response of the girder is shown at a moving velocity of 240km/h and increased with increasing moving velocity of train. These results can be used to design a bridge for maglev propulsion trains and provide the basic data to confirm the validity and verification of the design code.

Safety Evaluation of the Dynamic Behavior of HEMU-430X using the Accelerometers of UIC 518 OR (UIC 518 OR의 가속도계를 이용한 차세대고속열차(HEMU-430X) 동적 거동 안전성 평가)

  • Ryu, Sang-Hyun;Kim, Sang-Soo;Hong, June-Hee;Song, Doo-Sang;Guo, Yang-Yang
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • The next generation high-speed train(HEMU-430X) is Korea's first electric multiple unit type, high speed vehicle resulting from a national R&D project. Tests have been conducted on the Kyungbu High Speed Line running at speeds up to 354.64km/h, and analysis of the dynamic behavior of the train was carried out to evaluate its safety. In this study, a simplified method using an accelerometer(the method specified in UIC 518 OR) was chosen to analyze the safety of the train's dynamic behavior. The section chosen for analysis section was ${\pm}10{\sim}20km/h$ with respect to the maximum speed point. In addition, we analyzed the trend of this dynamic behavior with increasing speed by comparing the analyzed values with those of UIC 518 OR. The dynamic behavior results met the limit values of UIC 518 OR and the study indicates that this trend is predicted to continue at speeds above 354km/h.

Effect of Hydrogen Purge Mode on the Polymer Electrolyte Membrane Fuel Cell (PEMFC) Performance under Dead-ended Anode Operation (양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.687-693
    • /
    • 2019
  • As the hydrogen fuel cell market is expanded starting from hydrogen electric vehicle and power generation field, the demand for fuel cells and hydrogen increases recently. Therefore, research works on fuel cell durability and fuel efficiency are required in order to activate the fuel cell market and commercialization. A dead-ended anode system was used in this study to optimize the fuel cell performance and fuel efficiency. The effect of purge condition according to the applied current and hydrogen supply pressure on the fuel cell performance were evaluated. In addition, the influence of water back diffusion on the different electrolyte membrane thickness was analyzed. The accumulated water was purged with a solenoid valve in the case of 3% voltage decrease in the dead-ended anode system. The experiment was performed with the hydrogen supply pressure of 0.1~0.5 bar and purge duration of 0.1~1 second. A maximum fuel efficiency of 98.9% was achieved under the purge duration of 0.1 s and hydrogen supply pressure of 0.1 bar with a NR 211 (25.4 um) membrane. However, the fuel cell performance decreased in a long-term operation due to some frequent flooding. The fuel efficiency and purge interval increased due to decreased back diffusion rates of the water and nitrogen with a NR 212 (50.8 um) membrane.

Mission Analysis Involving Hall Thruster for On-Orbit Servicing (궤도상 유지보수를 위한 홀추력기 임무해석)

  • Kwon, Kybeom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.10
    • /
    • pp.791-799
    • /
    • 2020
  • Launched in October 2019, Northrop Grumman's MEV-1 was the world's first unmanned mission demonstrating the practical feasibility of on-orbit servicing. Although the concept of on-orbit servicing was proposed several decades ago, it has been developed to various mission concepts providing services such as orbit change, station keeping, propellant and equipment supply, upgrade, repair, on-orbit assembly and production, and space debris removal. The historical success of MEV-1 is expected to expand the market of on-orbit servicing for government agencies and commercial sectors worldwide. The on-orbit servicing essentially requires the utilization of a highly propellant efficient electric propulsion system due to the nature of the mission. In this study, the space mission analysis for a simple on-orbit mission involving Hall thruster is conducted, which is life extension mission for geostationary orbit satellites. In order to analyze the mission, design space exploration for various Hall thruster design variable combinations is performed. The values of design variables and operational parameters of Hall thruster suitable for the mission are proposed through design space analysis and optimization, and mission performance is derived. In addition, the direction of further improvement for the current on-orbit mission analysis process and space mission analysis involving Hall thruster is reviewed.

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

Stakeholder Oriented Economical Efficiency Analysis on the Scenario to Implement Smart Transportation Services (지능형 운송 서비스 구축 시나리오에 대한 이해관계자 중심 경제성 분석)

  • Shin, KwangSup;Moon, Yongma;Hur, Wonchang;Kim, Woo Je
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • This research proposed a new method to evaluate the objective validity to launch smart transportation services that various stakeholders are complicatedly inter-connected. First of all, we have designed the fundamental business model to form the smart transportation services and defined the stakeholders taking part in the services. Also, the criteria to evaluate the economical validity has been proposed based on the relationship among stakeholders. Especially, in the case EV drivers and charging service providers, the economical validity depends on the scale of spreading. Therefore, we have compared the two extreme scenarios, the poor and stable level of EV spreading. According to the result, it may be said that EV drivers and charging service providers cannot be guaranteed the economical validity due to the burden of initial investment. On the contrary to this, suppliers of EV and charging gears may secure more than a certain level of profit. In addition, the government may have great profit due to reducing the CO2 emission and cost for importing energy sources. Therefore, it is needed to enhance the level of supporting EV drivers and charging service providers at the first stage. Also, the impact of the ratio of EV and charging service stations on the economical validity of smart transportation should be further investigated.