• Title/Summary/Keyword: Electric safety

Search Result 1,827, Processing Time 0.033 seconds

Comparison between a Light-Scattering and a Light-Extinction Methods for the Study on Soot Yielding Characteristics of an Electric Cable Fire (전선 매연 생성 특성 연구를 위한 광산란법-광소멸법의 비교)

  • Cho, Sang-Moon;Lee, Min-Jung;Kim, Nam-Il
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.38-43
    • /
    • 2008
  • Significant portion of the fire accident is caused by some troubles in electric circuits. To prevent the fire induced by those electric trouble, some indications of electric fire need to be suitably detected at the first stage of the fire development. With this background, the characteristics of soot yielding of electric cables have been investigated using a light extinction method. In this study, a light scattering method was compared with the light extinction method. A slot-type premixed-flame combustor was traversed to bum three types of electric cables by compulsion, then the mass decrease rate and the soot densities were measured. According to the experimental results, the light scattering method is preferred to the light extinction method when the soot yield ratio is relatively small. Thus the former method is more suitable to detect the occurrence of an electric fire in a power distributer box.

Development and Effect Analysis of Experiential Electrical Safety Education System Based on Virtual Reality (가상현실 기반 체험형 전기안전 교육 시스템의 개발 및 효과 분석)

  • Jeon, Jeong-Chay
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1767-1773
    • /
    • 2016
  • Every year, lives are lost due to electrical safety accidents that could have been prevented with proper education and awareness of electrical safety. To prevent such accidents, experiential education is more effective than indoctrination education. This paper describes the electrical safety education system based on virtual reality (VR) and evaluates effect of the proposed system. Users operated the experiential electrical safety education system, and they were provided electrical stimulation in an electric shock experience using a haptic device. Appropriate stimulation values were calculated according to age (children vs. adults) and gender through experiment. The scenario in which participants experience electrical safety in the home environment was structured, and related educational contents was produced. A total of 68 healthy elementary students evaluated the educational effect of the system. The results showed that the educational effect and the sustainability of effect of the proposed system are superior to those of existing multimedia learning methods. By implementing electrical safety education stimulating the senses of human, the learning effect was promoted and this experiential education would be able to prevent electrical accidents.

Study on the Evaluation Method of Electrical Isolation Property for Hydrogen Fuel Cell Vehicle in Post Crash (수소연료전지자동차의 충돌시 절연성능 평가방법에 관한 고찰)

  • Lee, Kiyeon;Gil, Hyoungjun;Kim, Dongook;Kim, Dongwoo;Kang, Daechul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.6
    • /
    • pp.612-618
    • /
    • 2012
  • In this paper, in order to prevent electric shock of high voltage system of HFCV after crash test, insulation performance measurement methods were studied. Under conditions of in-use, insulation performance tests can be divided into measurement method using the vehicle's own RESS as DC voltage source and measurement method using DC voltage from off-vehicle sources. However, these tests can not be applied after a post-crash because parts of high voltage system cover should be removed, and insulation performance can be influenced during these tests. Therefore, we proposed post-crash insulation performance test methods for preventing electric shock through problem analysis of previous post-crash insulation performance tests. Also, test equipment which can measure voltage absence and total energy was developed. We verified performance of the equipment through experiments with vehicle test.

A Study on Application of ECO Driving Pattern of Electric Multiple Unit in ATO System (Focus on Simulation Results) (ATO 시스템 전동차의 ECO 운행패턴 적용에 관한 연구 (시뮬레이션 결과를 중심으로))

  • Kim, Kyujoong;Lee, Keunoh;Kim, Juyong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • This study focuses on finding ECO driving patterns which consider driving safety of the ATO system train and reliability and which optimize efficiency of the driving energy consumption. Research results derived by performing simulation of those 5 models show that the emergency braking which affects safety of passenger and the machinery is minimized, and safe driving speed is maintained by the prohibition of drastic acceleration/deceleration, coasting and constant-speed driving. Therefore if this result is applied to the urban railway train by amending or making ATO program to save energy usage that improve environmental quality, its effects as ECO driving pattern is huge.

Recent Trend of International Standards on the Safety Criteria for Electric Shock Protection (인체감전 안전기준에 관한 최근 국제규격의 동향)

  • Lee, Jong-Chul;Kim, Han-Soo;Lee, Ju-Chul;Kang, Sung-Man
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.189-193
    • /
    • 2007
  • The grounding of an electrical system is one of the essential elements for public safety. Domestic practice of grounding system design has been to get grounding resistance values which are classified by facilities or equipment in the regulations. But the concept of grounding system design of IEC is, as a main factor of safety index, to consider touch voltage and step voltage instead of the resistance value itself. Recently IEC actively develops or revises safety related standards which are essential for the grounding system performance. In this paper, we present the recent trend of the international standards on the safety criteria for Electric Shock Protection.

  • PDF

Analysis of the International Safety Criteria of IEEE Std 80 and IEC 479-1 (배전용 접지전극 안전성 분석을 위한 국제기준 검토)

  • Kang, Moon-Ho;Park, Jae-Duck;Lee, Heung-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.214-217
    • /
    • 2005
  • To improve the safety of facilities and human beings when the ground fault occurs, public power utility prescribes the reasonable ground resistances, measures and controls the ground resistance of all the ground electrodes biennially. Concerning the safety of human, there are two safety criteria widely accepted, i.e. the IEEE Std 80-2000 and the IEC 479-1:1994. The IEEE Std 80-2000 is based on a simplified electric shock model usually translated into permissible touch and step voltages. The IEC 479-1:1994 is less specific than IEEE Std 80-2000 for analysis purpose. The IEC 479-1:1994 provides values of permissible body current against electric shock duration. This paper provides a technical study of these two standards to analyze the safety of human beings of ground electrodes developed recently for distribution power system.

  • PDF

Safety Evaluation for Restoration Process on Plastic Deformed Cylindrical Beam (소성변형된 실린더형 빔의 복원 안전성 평가)

  • Park Chi-Yong;Boo Myung-hwan
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.7-12
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore a damaged part of large machinery or structure which is installed in the hazard working place. In this paper, to evaluate the safety of plastic deformed cylindrical beam a finite element technique has been used. The variations of residual stresses on the process of damaging and restoring for surfaces and cross-sections have been examined. The results show that the maximum von Mises stresses occur outer cylinder surfaces of boundary between cylindrical beam support md cylindrical beam when deformation procedure and restoring force is applied. The maximum residual stress remains 158.6MPa in the inner wall and this value correspond to $53\%$ of yield stress then restoration procedure is finished.

A Quantitative Assessment of Organizational Factors Affecting Safety Using System Dynamics Model

  • Yu Jaekook;Ahn Namsung;Jae Moosung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • The purpose of this study is to develop a system dynamics model for the assessment of the organizational and human factors in a nuclear power plant which contribute to nuclear safety. Previous studies can be classified into two major approaches. One is the engineering approach using tools such as ergonomics and Probability Safety Assessment (PSA). The other is the socio-psychology approach. Both have contributed to find organizational and human factors and to present guidelines to lessen human error in plants. However, since these approaches assume that the relationship among factors is independent they do not explain the interactions among the factors or variables in Nuclear Power Plants. To overcome these restrictions, a system dynamics model, which can show cause and effect relationships among factors and quantify the organizational and human factors, has been developed. Handling variables such as the degree of leadership, the number of employees, and workload in each department, users can simulate various situations in nuclear power plant organization. Through simulation, users can get insights to improve safety in plants and to find managerial tools in both organizational and human factors.

Manufacturing and Characteristics Analysis of a Testing Device for the Evaluation of a Distribution Board Management System (분전반 관리시스템 평가를 위한 시험 장치의 제작 및 특성 분석)

  • Ko, Wan Su;Lee, Byung Seol;Choi, Chung Seog
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.31-36
    • /
    • 2019
  • This study made a testing device to evaluate the distribution board management system. Power was supplied to the testing device using a loading-back method and the voltage applied to it was 440 V at the same turn ratio. When the human body electric shock current is 30 mA, the breaking time is set to be less than 240 ms while 30~45 mA current is flowing. The test result shows that in the case of the R-phase it was measured to be 5.19 Hz (193 ms). And the S-phase and T-phase were perfectly cut off at 5.39 Hz (186 ms) and 5.71 Hz (175 ms), respectively. When the human body electric shock current is 60mA, the breaking time is set to be less than 120 ms while 45~75 mA current is flowing. The test result shows that the R-phase, S-phase, and T-phase were accurately cut off at 8.39 Hz (11 ms), 8.87Hz (113 ms) and 9.69 Hz (103 ms), respectively. When the human body electric shock current is 90 mA, the breaking time is set to be less than 48 ms while 75 mA current is flowing. The test result shows that the R-phase, S-phase, and T-phase were accurately cut off at 19.8 Hz (50.4 ms), 16.9 Hz (59.2 ms), and 17.9 Hz (56.0 ms), respectively. That is, the developed testing device satisfied all the requirements of the distribution board evaluation criteria, and it becomes available for the performance evaluation of the distribution board management system.