• Title/Summary/Keyword: Electric resistance$k{\Omega}$

Search Result 89, Processing Time 0.025 seconds

The Study on Vigor and External Factors of Tree in Damaged Pine Stands by Thecodiplosis japonensis Uchida et Inouye (솔잎혹파리 피해임지내 수목의 외형적 인자와 관련한 수세변동과정 해석)

  • Lee, Chan-Yong;Kim, Joung-Kuk;Chae, Hee-Mun;Lee, Sang-Bae;Won, Dae-Sung
    • Journal of Forest and Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This paper investigated external factors (height. crown width. diameter breath height, clear length) of tree and electric resistance ($k{\Omega}$) in damaged forest by Thecodiplosis japonensis Uchida et Inouye. The height. crown width and diameter breath height of tree external factors have high a coefficient of correlation. but clear length has not a coefficient of correlation. In relationship of electric resistance and external factor. big tree that height. crown width. diameter breath height has lower electric resistance value than that of small tree. (low electric resistance value is high tree vigor, high electric resistance value is low tree vigor)) Dead tree have smaller diameter breath height. crown width. higher clear length than survival tree in damaged forest by Thecodiplosis japonensis Uchida et Inouye. To investigation of relationship external factors according to electric resistance value. electric resistance value was divided three class (< $l4k{\Omega}$, possible of survival. $14{\sim}20k{\Omega}$, > $20k{\Omega}$, possible of dead). In lower class(< $l4k{\Omega}$), external factors have bigger which was height. crown width. diameter breath height and lower which was clear length than them of higher class ($14{\sim}20k{\Omega}$, > $20k{\Omega}$). Linear regression solutions of electric resistance and external factors were Y = -0.572 ${\times}$ Height - 1.163 ${\times}$ crown width - 0.242 ${\times}$ diameter breath height + 0.757 ${\times}$ clear length + 25.765. Regression solutions were significant in 5%.

  • PDF

The Study on Tree Vigor of Damaged Forest by Thecodiplosis japonensis Uchida et Inouye (솔잎혹파리 피해임지의 수세변동에 관한 연구)

  • Lee, Chan-Yong;Chae, Hee-Mun;Kim, Jong-Kuk
    • Journal of Forest and Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • This study investigated tree vigor of damaged forest by Thecodiplosis japonensis Uchida et Inouye. In damaged forest by pine gall midge, the investigation result of damaged rate section (severe, moderate, light) indicated that severe stand showed higher value of electric resistance ($k{\Omega}$) than that of light stand, the investigation result of tree density section(crowed, middle, little) indicated that crowed stand showed higher value of electric resistance than that of little stand (the value of electric resistance at which low reading show high vigor tree and high reading low vigor tree). The crown width and DBH (diameter of breast height) of external factors showed lower value of electric resistance than that of small size. The results of comparative between Crown area and value of electric resistance in each stand were $13.4m^2$ in severe stand, $10.9m^2$ in moderate stand and $7.9m^2$ in light stand. Therefore, the tree which have big crown showed low value of electric resistance (below $15k{\Omega}$)that has high possible of survial.

  • PDF

Analysis on Induced Lightning of a 22.9kV-Y Distribution Line Using a Reduced Model (축소모델을 이용한 22.9kV-Y 배전선로의 유도뢰 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom;Kwon, Sin-Won;Gil, Kyung-Suk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.434-439
    • /
    • 2010
  • This study fabricated a simulation facility which reduced the structure of a current distribution line to 50:1 in order to analyze the induced lightning shielding effect of a 22.9kV-Y distribution line according to ground resistance capacity, grounding locations, etc. When installing an overhead ground wire, the standard for grounding a distribution line with a current of 22.9kV-Y requires that ground resistance in common use with the neutral line be maintained less than $50\Omega$every 200m span. The reduced line for simulation had 7 electric poles and induced lightning was applied to the ground plane 2m apart from the line in a direction perpendicular to it using an impulse generator. If induced voltage occurred in the line and induced current flowed through the line due to the applied current, the induced voltage and current of the 'A' phase were measured respectively using an oscilloscope. When all 7 electric poles were grounded with a ground resistance of less than $50\Omega$ respectively, the combined resistance of the line was $7.4\Omega$. When an average current of 230A was applied, the average induced voltage and current measured were 1,052V and 13.8A, respectively. Under the same conditions, when the number of grounding locations was reduced, the combined resistance as well as induced voltage and current showed a tendency to increase. When all 7 electric poles were grounded with a ground resistance of less than $100\Omega$, the combined resistance of the line was $14.9\Omega$. When an average current of 236A was applied, the average induced voltage and current of the 'A' phase calculated were 1,068V and 15.6A, respectively. That is, in this case, only the combined resistance was greater than when all 7 electrical poles were grounded, and the induced voltage and current were reduced. Therefore, it is thought that even though ground resistance is slightly higher under a construction environment with the same conditions, it is advantageous to ground all electric poles to ensure system safety.

Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system (배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Structure Modeling of 100 V Class Super-junction Trench MOSFET with Specific Low On-resistance

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • For the conventional power metal-oxide semiconductor field-effect transistor (MOSFET) device structure, there exists a tradeoff relationship between specific on-resistance ($R_{ON.SP}$) and breakdown voltage ($V_{BR}$). In order to overcome the tradeoff relationship, a uniform super-junction (SJ) trench metal-oxide semiconductor field-effect transistor (TMOSFET) structure is studied and designed. The structure modeling considering doping concentrations is performed, and the distributions at breakdown voltages and the electric fields in a SJ TMOSFET are analyzed. The simulations are successfully optimized by the using of the SILVACO TCAD 2D device simulator, Atlas. In this paper, the specific on-resistance of the SJ TMOSFET is successfully obtained 0.96 $m{\Omega}{\cdot}cm^2$, which is of lesser value than the required one of 1.2 $m{\Omega}{\cdot}cm^2$ at the class of 100 V and 100 A for BLDC motor.

A Study of Properties of 3C-SiC Films deposited by LPCVD with Different Films Thickness

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.101-104
    • /
    • 2008
  • The electrical properties and microstructure of nitrogen-doped poly 3C-SiC films were studied according to different thickness. Poly 3C-SiC films were deposited by LPCVD(low pressure chemical vapor deposition) at $900^{\circ}C$ and 4 Torr using $SiH_2Cl_2$ (100 %, 35 sccm) and $C_2H_2$ (5 % in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5 % in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the 3C-SiC films with $1,530{\AA}$ of thickness was $32.7{\Omega}-cm$ and decreased to $0.0129{\Omega}-cm$ at $16,963{\AA}$. In XRD spectra, 3C-SiC is so highly oriented along the (1 1 1) plane at $2{\theta}=35.7^{\circ}$ that other peaks corresponding to SiC orientations are not presented. The measurement of resistance variations according to different thickness were carried out in the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of resistance variation decreases with increasing the films thickness, the linearity of resistance variation improved.

Field Evaluation of Particulate Control Efficiency of Electrostatic Precipitator in Thermoelectric Power Plant Associated with Addition of Triethyl Amino(TEA) (트리에틸아민 첨가에 따른 열병합발전소 전기집진장치의 집진효율 특성의 현장 평가)

  • Jo, Wan-Kuen;Jeon, Ok-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.445-449
    • /
    • 2005
  • Present study was designed to evaluate the practical application of triethyl amine(TEA) injection for improving the collection efficiency of electrostatic precipitator(ESP) connected to a real operating plant. The major fuels used at the domestic power stations were bituminous coals imported from Australia, China, South Africa, and USA. Although the values of the electric resistance would be more or less different according to the type of the coals used, the unique electric resistance values of fly ash from the coals were mostly higher than $1{\times}10^{12}\;{\Omega}-cm$ and therefore, back corona problems were always expected to occur in the electrostatic precipitator. The particulates concentrations, smoke concentrations and their electric resistivity measured at the outlet of ESP, and the inspection of collection indicated that the injection of TEA improved the collection efficiency of particulate at collection plates of ESP. The electric resistance for, fly ash with the injection concentration of TEA 15 ppm(Purity 99.7%) was lowered to $2.1{\times}10^{11}\;{\Omega}-cm$ after injection from $1.9{\times}10^{12}\;{\Omega}-cm$ before injection. Under this condition, the dust emission content at the stack was reduced to approximately 80%, lowering the average outlet concentrations of particulates from $70\;mg/Sm^3$ to $14\;mg/Sm^3$.

Fretting Corrosion Behavior of Silver-Plated Electric Connectors with Constant Displacement Amplitude (일정 변위 진폭조건에서의 은도금한 커넥터의 미동마멸부식 거동)

  • Oh, Man-Jin;Kim, Min-Jung;Kim, Taek-Young;Kang, Se-Hyung;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • Fretting corrosion tests are conducted with a constant displacement amplitude using silver-plated brass coupons to investigate the effect of contact pressure on fretting corrosion. Three behaviors are identified based on the change in electric resistance and friction coefficient during the fretting test period, and the identified behaviors are dependent on the magnitude of the applied load. The failure cycle ($N_f$) with an electric resistance of 0.1 D cannot be achieved due to the adhesion behavior of the metal and metal contact under the higher applied load of 0.45 N. This suggests that an average contact pressure higher than 159 MPa for the silver-coated connector is desirable to gain an almost infinite lifetime. The relationship between the electric contact resistance (R) and the average contact pressure (p) can be written as $p=106.2{\times}{\Omega}^{-1.5}$.

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

A Study on the Switching and Retention Characteristics of PLT(5) Thin Films (PLT(5) 박막의 Switching 및 Retention 특성에 관한 연구)

  • Choi Joon Young;Chang Dong Hoon;Kang Seong Jun;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.367-370
    • /
    • 2004
  • We fabricated PLT(5) thin film on $Pt/TiO_x/SiO_2/Si$ substrate by using sol-gel method and investigated leakage current, switching and retention properties. The leakage current density of PLT(5) thin film was $3.56{\times}10^{-7}A/cm^2$ at 4V. In the examination of switching properties, pulse voltage and load resistance were $2V{\~}5V$ and $50{\Omega}{\~}3.3k{\Omega}$, respectively. Switching time had a tendency to decrease from 520ns to 140ns with the increase of pulse voltage, and also the time was increased from 140ns to $13.7{\mu}s$ with the increase of load resistance. The activation energy obtained from the relation of applied pulse voltage and switching time was about 143kV/cm. The error of switched charge density between hysteresis loop and experiment of polarization switching was about $10\%$. Also, polarization in retention was decreased as much as about $8\%$ after $10^5$s.

  • PDF