• Title/Summary/Keyword: Electric field treatments

Search Result 29, Processing Time 0.023 seconds

Effects of Electric Current Stimuli and High-Voltage Electric Field Treatments on Brown Rice Germination (전류자극 및 전기장 처리가 현미 발아에 미치는 영향)

  • Lim, Ki-Taek;Kim, Jang-Ho;SeonWoo, Hoon;Hong, Ji-Hyang;Chung, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.100-107
    • /
    • 2010
  • This study was conducted to investigate the effects of electric current stimuli and high-voltage electric field treatments on brown rice germination. The brown rice stimulated by electrical current stimuli, functional electrical stimuli of a pulse type, and high-voltage electric field treatments were observed (Type I, II and III). Treatment Type I was a method of semi-soaking brown rice with electric current stimuli of 0.13 V/cm, 0.19 V/cm, and 0.25 V/cm into Petri-dishes for 72 hours. Type II was a method of semi-soaking brown rice with functional electrical stimuli of a pulse type(DC 1 V, 1 Hz, 5%, and duty cycles of 5%, 20%, and 35%) into Petri-dishes for 72 hours. Type III was a method of water-soaking with high-voltage electric field treatments for 60 hours. High-voltage electric field treatments at 15 kV/cm were also conducted for 2.5 min, 7.5 min, and 10 min, respectively. The germination rate and the sprout growth of brown rice germinated by electric current stimuli with 0.13 V/cm, 0.19 V/cm, and 0.25 V/cm were increased by about 10-15% compared with those of the control group. The germination rate and the sprout growth of brown rice germinated by functional electrical stimuli of pulse type(DC 1 V, 1 Hz, 5% duty cycle) were increased by about 10∼15% compared to those of the control group. Also, the best effective treatment among high-voltage electric field treatments was the 10 min group at 15 kV/cm. The germination rate and the sprout growth of brown rice germinated by this treatment of 10 min at 15 kV/cm were increased by about 10∼20% compared to those of the control group. The treatments of electric current stimuli and high-voltage electric field accelerated the germination rate and sprout growth of brown rice by about 10∼15% compared to those of the control group.

Strain Improvement of Yeast for Ethanol Production Using a Combined Treatment of Electric Field and Chemical Mutagen N-Methyl-N'-nitro-N- nitrosoguanidine

  • Kim, Keun;Lee, Jae-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 1998
  • The feasibility of using combined treatments of electric field and chemical mutagen N-methyl-N'-nitro-N-nitroso-guanidine (NTG) for the strain improvement of Saccharomyces sp. in ethanol production was examined. The treatment of electric field alone resulted in no effect on the lethality of yeast cells under the conditions of this study. However, when the electric field was applied together to the treatment of yeast cells with NTG, the electric field increased the lethal effect and auxotrophic mutation rate of NTG. The combined treatment of electric field and NTG also increased the chances of. obtaining superior yeast strains for the ethanol production from tapioca. A higher number of improved clones was obtained by the combined treatments of electric field and NTG than by the NTG treatment alone. The best clone, NF 30-9, which was also obtained by the combined treatment, produced $11.07\%$ (w/v) ethanol from tapioca slurry containing 25% (w/v) reducing sugar while the parental strain produced 9.77% (w/v).

  • PDF

Effect of Chemical Treatments and Electric and Magnetic Field Treatments on Germination of Onion Seeds (화학적 처리와 전장 및 자기장 처리가 양파 종자의 발아에 미치는 영향)

  • Choi, Choong-Lyeal;Kwak, Dong-Jun;Park, Man;Song, Kyung-Sik;Rhee, In-Koo;Kim, Jang-Eok;Choi, Jyung;Lee, Dong-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.78-84
    • /
    • 2005
  • This study was conducted to investigate the effects of chemical treatments and electric and magnetic field treatments on germination and seedling growth of onion (Allium cepa L.). Germination ratios of the onion seed were not much different among the tested species. However, germination ratio was much higher in species of small and medium size seed than that of large one. Moisture content of the seeds was shown to be more suitable in the range of 10-15% for seed germination compare to that of 20%. The germination ratio of onion seeds was found to be increased by the chemical treatments in the order of GA<$NaNO_3$<$KNO_3$. In particular, the treatments with 0.1 and 0.2% $KNO_3$ increased the germination ratio by 13 and 15% compared to that of the non-treatment. The seeds treated with electric or magnetic field resulted in much higher germination ratio and better initial growth. Germination ratios of 86 and 88% were found in the 10 kV and 4 Gauss treatments, respectively. The length and weight of the seedlings grown for 40 days after transplanting were increased by 23-45% with 8 kV and 12 Gauss treatments compared to those of non-treatment.

Optimization of dry-aging conditions for chicken meat using the electric field supercooling system

  • Chang-Hwan Jeong;Sol-Hee Lee;Hack-Youn Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.3
    • /
    • pp.603-613
    • /
    • 2024
  • This study was designed to determine the optimal aging conditions after analyzing the physicochemical and microbiological properties of dry-aged chicken breast using an electric field supercooling system (EFSS). Chicken breast was aged for up 5 weeks at three different temperatures (0℃, -1℃, and -2℃). Aging and trimming loss at -2℃ treatment showed lower values than at 0℃ and -1℃ treatments. Thiobarbituric acid reactive substances and volatile basic nitrogen in all treatments increased during the aging process but showed the lowest levels at -2℃. As a result of analysis of aerobic bacteria, it is microbiologically safe to dry-age for up to 2 weeks at 0℃ and up to 3 weeks at -1℃ and -2℃. Therefore, the dry-aged chicken breast with EFSS was optimally aged for 3 weeks at -2℃.

Effect of continuous pulsed electric fields treatments on quality of apple juice (사과주스의 품질에 미치는 pulsed electric field 연속 처리효과)

  • Ahn, Seong-Hwan;Lim, Jeong-Ho;Kim, Young-Ho;Chung, Suk Jin;Park, Kee-Jai
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.650-658
    • /
    • 2013
  • Apple juices were sterilized by continuous pulsed electric field (PEF) treatments of pulse width of 25 ${\mu}s$ at electric field intensity of 20.0 kV/cm, and with the varied pulse frequencies of 35 Hz (40 kJ/L), 55 Hz (70 kJ/L), 72 Hz (100 kJ/L) and 85 Hz (130 kJ/L). The PEF treatments of apple juice reduced the microbial counts from 5.3 log CFU/mL of initial state to 3.0 log CFU/mL after PEF treatment at energy density of 130 kJ/L. Also yeast and fungi after PEF treatments were reduced from 5.3 log CFU/mL to 3.0 log CFU/mL and Escherichia coli were from 5.3 log CFU/mL of initial state to 4.7 log CFU/mL to < $10^1$ CFU/mL. The soluble solids and free sugars did not significantly differ (p<0.05) depending on conditions of PEF treatment. The total phenolic contents and antioxidant activity such as the DPPH and ferric reducing antioxidant power (FRAP) by PEF treatments were significantly partly reduced, but the PEF-reduced value came in smaller quantities than the heat treatment at $65^{\circ}C$. The iterative PEF treatments with pulse width of 25 ${\mu}s$ and pulse frequency of 85 Hz at electric field intensity of 20.0 kV/cm showed limited in microbial reduction. Also, total phenolic contents and antioxidant activity such as DPPH and FRAP, significantly decreased depending on treatment numbers of PEF (p<0.05).

Pulsed electric field pasteurization of mandarin and carrot juices (Pulsed electric field 공정을 이용한 감귤 주스와 당근 주스 살균)

  • Lee, Seung Jo;Choi, Hyuk Joon;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.408-414
    • /
    • 2017
  • Effects of pulsed electric field (PEF) processing on growth inhibition of indigenous aerobic microorganisms and the quality of mandarin and carrot juices were investigated. Mandarin juice was PEF-treated at 15-23 kV/cm for $23-241{\mu}s$, whereas carrot juice was treated at 13-14 kV/cm for 127-198 s. At $25^{\circ}C$ (inlet temperature), PEF treatments at 23 kV/cm for $104{\mu}s$ and 14 kV/cm for $198{\mu}s$ reduced the numbers of total mesophilic aerobes by $6.3{\pm}0.8$ and $5.5{\pm}0.9{\log}\;CFU/mL$ in mandarin juice and carrot juice, respectively. Elevation of inlet temperature to $40^{\circ}C$ increased the reduction rates in both juices. In general, the treatments resulting in the highest microbial inhibition at 25 and $40^{\circ}C$ did not alter the physicochemical and nutritional properties of both juices (p>0.05). PEF is a feasible technology to pasteurize mandarin and carrot juices commercially, with minimal quality deterioration.

Pulsed Electric Field Effects to Reduce the Level of Campylobacter spp. in Scalder and Chiller Water during Broiler Chicken Processing

  • Shin, Dae-Keun;Martin, Bradely C.;Sanchez-Plata, Marcos X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1314-1317
    • /
    • 2011
  • To evaluate the effects of pulsed electric field (PEF) application on scalder and chiller water on Campylobacter contamination, four different treatments under three different water conditions including hard scalder water ($55^{\circ}C$), soft scalder water ($45^{\circ}C$) and chiller water, were applied as follows: i) a control treatment with no salt and no electric treatment, ii) a PEF only treatment, iii) a PEF treatment with 0.5% salt water, and iv) a PEF treatment with 1% salt water treatment. The use of PEF in hard scalding water showed an effect of reducing Campylobacter when compared to the control during the 200 s timeframe. With the addition of salt, the intervention caused at least 5.81 log CFU/ml reduction of Campylobacter counts after 200 s of PEF exposure. Similar effects were observed under soft scalding conditions. Campylobacter reductions were evident under chilling conditions with up to 2.00 log for PEF only, 5.77 log for PEF+0.5% salt and 2.69 log for PEF+1% salt treatment in water. Therefore, the current PEF setting for the scalder and chiller water can be successfully used to reduce pathogenic loads of Campylobacter on broiler chicken carcasses, and further research may be necessary to apply it in the poultry processing industry.

Study of Surface Treatments on Field Emission Properties for Triode-Type Carbon Nanotube Cathodes (3극형 탄소나노튜브 캐소드의 전계방출 특성에 미치는 표면처리에 관한 연구)

  • Lee, Ji-Eon;An, Young-Je;Lee, Je-Hyun;Chung, Won-Sub;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Carbon nanotube cathodes(CNT cathodes) with a trench structure similar to gated structure of triode-type cathode were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatments on CNT cathodes were investigated for high efficiency field emission displays(FEDs). A liquid method easily removed the organic residue and protruded the CNTs. Field emission properties were measured by using a diode-type mode. The liquid method produced a turn-on field of $1.4V/{\mu}m$. The emission current density was measured about $3.1mA/cm^{2}$ at the electric field of $3V/{\mu}m$. The liquid method showed a high potential applicable to the surface treatment for triode-type FEDs.

Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

  • Lee, Gun Joon;Han, Bok Kung;Choi, Hyuk Joon;Kang, Shin Ho;Baick, Seung Chun;Lee, Dong-Un
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.800-806
    • /
    • 2015
  • We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 µs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.

Field Emission Enhancement by Electric Field Activation in Screen-printed Carbon Nanotube Film

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.45-48
    • /
    • 2005
  • By applying a critical field treatment instead of the conventional surface treatments such as soft rubber roller, ion beam irradiation, adhesive taping, and laser irradiation, electron emission properties of screen-printed carbon nanotubes (CNTs) were enhanced and investigated based on the emission current-voltage characteristics through scanning electron microscopy. After nanotube emitters were activated at the applied electric-field of 2.5 V/um, the electron emission current density with good uniform emission sites reached the value of 2.13 mA/$cm^2$ , which is 400 times higher than that of the untreated sample, and the turn-on voltage decreased markedly from 700 to 460 V. In addition, enhancement of the alignment of CNTs to the vertical direction was observed.