Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11075

Pulsed Electric Field Effects to Reduce the Level of Campylobacter spp. in Scalder and Chiller Water during Broiler Chicken Processing  

Shin, Dae-Keun (Department of Poultry Science, Texas A&M University)
Martin, Bradely C. (Department of Poultry Science, Texas A&M University)
Sanchez-Plata, Marcos X. (Department of Poultry Science, Texas A&M University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.9, 2011 , pp. 1314-1317 More about this Journal
Abstract
To evaluate the effects of pulsed electric field (PEF) application on scalder and chiller water on Campylobacter contamination, four different treatments under three different water conditions including hard scalder water ($55^{\circ}C$), soft scalder water ($45^{\circ}C$) and chiller water, were applied as follows: i) a control treatment with no salt and no electric treatment, ii) a PEF only treatment, iii) a PEF treatment with 0.5% salt water, and iv) a PEF treatment with 1% salt water treatment. The use of PEF in hard scalding water showed an effect of reducing Campylobacter when compared to the control during the 200 s timeframe. With the addition of salt, the intervention caused at least 5.81 log CFU/ml reduction of Campylobacter counts after 200 s of PEF exposure. Similar effects were observed under soft scalding conditions. Campylobacter reductions were evident under chilling conditions with up to 2.00 log for PEF only, 5.77 log for PEF+0.5% salt and 2.69 log for PEF+1% salt treatment in water. Therefore, the current PEF setting for the scalder and chiller water can be successfully used to reduce pathogenic loads of Campylobacter on broiler chicken carcasses, and further research may be necessary to apply it in the poultry processing industry.
Keywords
Campylobacter; Pulsed Electric Field; Scalder; Chiller;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Toepfl, S., V. Heinz and D. Knorr. 2007. High intensity pulsed electric fields applied for food preservation. Chem. Eng. Process. 46:537-546.   DOI   ScienceOn
2 United States Department of Agriculture-Food Safety Inspection Service (USDA-FSIS). 2004. Salmonella Incidence in Broilers. Available from: http://www.fsis.usda.gov/OPPDE/animalprod/Publications. Accessed Oct. 14, 2008.
3 Wesierska, W. and T. Trziszka. 2007. Evaluation of the use of pulsed electrical field as a factor with antimicrobial activity. J. Food Eng. 78:1320-1325.   DOI   ScienceOn
4 Lillard, H. S. 1989. Factors affecting the persistence of Salmonella during processing of poultry. J. Food Prot. 52:829-832.
5 Murphy, C., C. Carroll and K. N. Jordan. 2006. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100:623-632.   DOI   ScienceOn
6 Oosterom, J., S. Notermans, H. Karman and G. B. Engels. 1983. Origin and prevalence of Campylobacter jejuni in poultry processing. J. Food Prot. 46:339-344.
7 Ravishankar, S., G. J. Fleischman and V. M. Balasubramaniam. 2002. The inactivation of Escherichia coli O157:H7 during pulsed electric field (PEF) treatment in a static chamber. Food Microbiol. 19:351-361.   DOI   ScienceOn
8 Schoenbach, K. H., F. E. Peterkin, R. W. Alden III and S. J. Beebe. 1997. The effect of pulsed electric fields on biological cells: Experiments and applications. IEEE T. Plasma Sci. 25:284-292.   DOI   ScienceOn
9 Schoenbach, K. H., R. P. Joshi, R. H. Stark, F. C. Dobbs and S. J. Beebe. 2000. Bacterial decontamination of liquids with pulsed electric fields. IEEE T. Dielect. El. In. 7:637-645.   DOI   ScienceOn
10 Smith, K., J. Besser, C. Hedberg, F. Leano, J. Bender, J. Wicklund, B. Johnson, K. Moore and M. Osterholm. 1999. Quinoloneresistant Campylobacter jejuni infections in Minnesota, 1992-1998. New Engl. J. Med. 340:1525-1532.   DOI   ScienceOn
11 SAS. 1998. SAS/STAT User Guide to Statistics (Version 6.12). SAS Inst. Inc., Cary, NC, USA.
12 Bautista, D. A., N. Sylvester, S. Barbut and M. W. Griffiths. 1997. The determination of efficacy of antimicrobial rinses on turkey carcasses using response surface designs. Int. J. Food Microbiol. 34:279-292.   DOI   ScienceOn
13 Stern, N., P. Fedorka-Cray, J. S. Bailey, N. A. Cox, S. E. Craven, K. L. Hiett, M. T. Musgrove, S. Ladely, D. Cosby and G. C. Mead. 2001. Distribution of Campylobacter spp. in selected U.S. poultry production and processing operations. J. Food Prot. 64:1705-1710.
14 Thompson, J. E., J. S. Bailey and N. A. Cox. 1979. Phosphate and heat treatments to control Salmonella and reduce spoilage and rancidity on broiler carcasses. Poult. Sci. 58:139-143.   DOI   ScienceOn
15 Altekruse, S. F., N. J. Stern, P. I. Fields and D. L. Swerdlow. 1999. Campylobacter jejuni-An emerging foodborne pathogen. Emerg. Infect. Dis. 5:28-35.   DOI   ScienceOn
16 Cox, J. E., A. J. Mercuri, D. A. Tanner, M. O. Carson, J. E. Thompson and M. S. Bailey. 1978. Effectiveness of sampling methods for Salmonella detection on processed broilers. J. Food Prot. 41:341-343.
17 Deming, M. S., R. V. Tauxe, P. A. Blake, S. E. Dixon, B. S. Fowler, S. Jones, E. A. Lockamy, C. M. Patton and R. O. Sikes. 1987. Campylobacter enteritis at a university: Transmission from eating chicken and from cats. Am. J. Epidemiol. 126:526-534.
18 Lee, S. Y., P. M. Gray, R. H. Dougherty and D. H. Kang. 2004. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples. Int. J. Food Microbiol. 92:121-127.   DOI   ScienceOn
19 James, W. O., O. W. Williams, Jr., J. C. Prucha, R. Johnston and W. Christensen. 1992. Profile of selected bacterial counts and Salmonella prevalence on raw poultry in a poultry slaughter establishment. J. Am. Vet. Med. Assoc. 200:57-59.
20 Korolczuk, J., J. R. McKeag, J. C. Fernandez, F. Baron, N. Grosset and R. Jeantet. 2006. Effect of pulsed electric field processing parameters on Salmonella enteritidis inactivation. J. Food Eng. 75:11-20.   DOI   ScienceOn