• Title/Summary/Keyword: Electric Wheelchair

Search Result 69, Processing Time 0.022 seconds

Development of Electric Motion Wheel Chair Driving System using Planetary Gear Device

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.199-206
    • /
    • 2020
  • A wheelchair is an essential rehabilitation assistant device for the movement of paraplegia patients and generally paralyzed patients who cannot walk normally. In particular, the applicability of the manual/motorized wheelchair is gradually increasing. Until now, decelerators using belt, chain and worm gears, etc have been widely used. However, a decelerator takes a large space although it is a simple device and thus is not ideal for the driving part of manual/motorized wheelchair. For these reasons, in this study we developed a driving part producing a large driving force through a decelerator using planetary gears rather than conventional worm gear-based decelerator. We designed the tooth profile of the planetary gears for decelerator using Kisssoft program, In addition, we designed the driving part so as to apply it to the wheels of conventional wheelchairs, and then optimized the mechanism for the principles of manual/motorized transposition of the driving part and the operational principles. Based on the results of this study, we finally designed and manufactured a driving part for wheelchair decelerator in the form of planetary gears with 1 sun gear, 2 planetary gears and 1 ring gear.

A Control Method for Power-Assist Devices using a BLDC Motor for Manual Wheelchairs

  • Kim, Dong-Youn;Kim, Yong-Hyu;Kim, Kwang-Sik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.798-804
    • /
    • 2016
  • This paper proposes a new operation and control strategy for Power-Assisted Wheelchairs (PAW) using one brushless DC (BLDC) motor. The conventional electrical wheelchairs are too heavy and large for one person to move because they have two electric motor wheels. On the other hand, the proposed PAW system has a small volume and is easy to move due to the presence of a single wheel motor. Unlike the conventional electric wheelchairs, this structure for a PAW does not have a control joystick to reduce its weight and volume. To control the wheelchair without a joystick, a special control system and algorithm are needed for proper operation of the wheelchair. In the proposed PAW system uses only one sensor to detect the acceleration and direction of PAW's movement. By using this sensor, speed control can be achieved. With a speed control system, there are three kinds of operations that can be done on the speed of a PAW: the increment of PAW speed by summing external force, the decrement of PAW speed by subtracting external force, and emergency breaking by evaluating the time duration of external force. The validity of the proposed algorithm is verified through experimental results.

Regulations on Wheelchair Power Assist Add-ons in Korea, Europe and United States (한국, 미국, 유럽의 휠체어동력보조장치 규제 현황)

  • Ki-Won Choi;Suk-Min Lee;Inhyuk Moon;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.525-531
    • /
    • 2023
  • In Korea, which is entering a super-aged society, the number of elderly patients who have difficulty walking independently is expected to increase rapidly, and it is necessary to develop wheelchair products with various functions to improve the quality of life of people with walking disabilities. Recently, wheelchair power assist devices that provide propulsion power by being attached to a manual wheelchair has been developed and is entering the domestic and global markets. In this study, we compared and analyzed the process of obtaining medical device certification for wheelchair power assist devices in Korea, the United States, and Europe. In Korea, a Class 2 medical device certification process was developed in 2021, and in the US FDA, it corresponds to Class 2 like the existing electric wheelchair and must pass the 510k certification process. In the case of Europe, it is uniquely regulated as Class I, and the CE mark can be attached through a relatively easy self-declaration of conformity. The Korean medical device industry, which is struggling with MDR certification, a new European medical device regulation, should pay attention to the relatively easy entry into the global market for wheelchair power assist products.

Design and Manufacture of Improved Obstacle-Overcoming type Indoor Moving and Lifting Electric Wheelchair (향상된 장애물 극복형 실내 이·승강 전동휠체어의 설계 및 제작)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.851-860
    • /
    • 2020
  • With an increase in the aging population and a rising social interest in health and welfare, studies to improve healthcare in the elderly are being actively conducted. This study attempted to improve the current design and manufacture of elevating electric wheelchairs to enhance user safety and convenience. Seat design based on the user's body shape, convenience while boarding or alighting, caster turning radius and, safety and stability features that prevent shaking when the user gets up or sits down were improved. A driving experiment was conducted to evaluate the operation of the indoor electric wheelchair designed and manufactured with these additional functionalities. During the test, the performance parameters evaluated were continuous driving time, turning radius, maximum lifting and lowering load, maximum lifting height, noise level, minimum distance sensing by the driving auxiliary sensor, ability to interact with server and app programs, and the duty cycle maximum error rate. The test confirmed that this improved electric wheelchair successfully met target parameters. In a future study, we will evaluate this improved electric wheelchair from a user's perspective for its usability parameters, such as satisfaction, convenience and stability.

Structural Stability Analysis of Connectors for an Electric Handbike (휠체어 전동주행 보조기기용 커넥터의 구조안정성 해석)

  • Seo, Han Wool;Kim, Dae Dong;Ko, Cheol Woong;Lee, Joon Hmm;Bae, Tae Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.491-496
    • /
    • 2015
  • Electric handbike can be easily detachable to various sizes of manual wheelchair and the elderly and people with disabilities can use them easily. Therefore, connectors used for coupling between the handbike and manual wheelchair must secure structural stability for occupant safety. However, related research is rare. The aim of this study is to find the connector with highly structural stability by comparing static and dynamic mechanical characteristics among three typical connectors(a snatch lock, a slide latch, and a fastener) by computational simulations. To perform static and dynamic simulation, we referred to durability test based on Korean Standards and then calculated mechanical stresses in connectors. The results showed that the snatch lock addressed the lowest von-mises stress under the same mechanical condition. Therefore when using the combination of a handbike and a wheelchair, we concluded that the snatch lock is considered as the structurally stable connector to structural stability and usability.

Development of Motorized Wheelchair INMEL-VII for Model of Practical Use (전동화 수동 휠체어의 실용화 모델 INMEL-VII의 개발)

  • Kim, Y.Y.;Kim, J.M.;Yang, K.M.;Jeong, D.M.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.92-95
    • /
    • 1994
  • We developed electric wheelchair INMEL-VI which is motorized wheelchair for practical use. The field test results of long time show some problems to disabled in daily use. INMEL-VII is designed to solve the problems of INMEL-VI and to adjust condition by the Korean Industrial Standards about the motorized wheelchair. Especially, it is improved to have durability, driving safety, and convenience of manipulating. In the driving field test in indoors and outdoors, it has been estimated to have a high practical use for powered walking aids to disable's daily life.

  • PDF

Designing an Intelligent Rehabilitation Wheelchair Vehicle System Using Neural Network-based Torque Control Algorithm

  • Kim, Taeyeun;Bae, Sanghyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5878-5904
    • /
    • 2017
  • This paper proposes a novel intelligent wheelchair vehicle system that enables upper limb exercises, lower limb standing exercises and rehabilitation training in a daily life. The proposed system, which can be used to prevent at least the degeneration of body movements and further atrophy of musculoskeletal system functions, considers the characteristics and mobility of the old and the disabled. Its main purpose is to help the old and the disabled perform their daily activities as much as they can, minimizing the extent of secondary disabilities. In other words, the system will provide the old and the disabled with regular and quantitative rehabilitation exercises and diagnosis using the wheelchair-based upper/lower limb rehabilitation vehicle system and then verify their effectiveness. The system comprises an electric wheelchair, a biometric module to identify individual characteristics, and an upper/lower limb rehabilitation vehicle. In this paper the design and configuration of the developed vehicle is described, and its operation method is presented. Moreover, to verify the tracking performance of the proposed system, dangerous situations according to biosignal changes occurring during the rehabilitation exercise of a non-disabled examinee are analyzed and the performance of the upper/lower limb rehabilitation exercise function depending on muscle strength is evaluated through a neural network algorithm.

Wheelchair Usage and Satisfaction Survey of Elderly Patients (노인 환자들의 휠체어 사용 실태와 만족도 조사 연구)

  • Park, S.H.;Shin, J.I.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.257-263
    • /
    • 2015
  • The purpose of this study was to survey the elderly patients through Basic information, Problems Wheelchair, Wheelchair Satisfaction, Usage and Requirements. The meaning of purpose is identify the problems and difficulties of wheelchair use in geriatric patients and an alternative for the correct use of wheelchairs elderly patients. The study investigated through questionnaires. That used questionnaires to modified to Gu Hyeon-Mo questionnaire (2005) and Quebec User Evaluation of Satisfaction with assistive Technology 2.0. 120 of 150 questionnaires were collected and one of them is excluded. Analysis results suggest the following. It was often feel joint pain results from physical damage. In addition when you use a wheelchair it was often feel discomfort in lower back and pelvis. And it feels uncomfortable when moving the tilt. Wheelchair satisfaction of the participants responded to the most 'Normal'. Results of the wheelchair operation ability is as follows. In the case of manual wheelchairs was feeling the difficulty to cross the threshold, Wheel lying, Stairs usage. Also In the case of an electric wheelchair was feeling the difficulty to use Tilt and Decline, Separate from the motor, and Replacement battery. In conclusion, To reduce of back pain and hip joints of elderly patients need to modify design and appearance of the wheelchair. In a later study will find to reduce discomfort and to improve satisfaction of the elderly who use wheelchairs. It will have to periodically examine the usage and satisfaction with them.

  • PDF

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

Design & fulfillment of multi-functional electric wheelchair (다기능 전동휠체어의 설계 및 구현)

  • 강재명;강성인;김정훈;류홍석;이상배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.261-264
    • /
    • 2002
  • In this study, we used a 16-bit microprocessor, 80C196KC for a control part in order to develop a multi-functional wheel-chair system, and implemented a joy-stick to control this system. For the complete system, we used a commercial electromotive wheelchair as a basic plant, and applied an encoder to get the rotating number of the motor to transfer data to the MCU to control the motor. We used PWM (Pulse Width Modulation) method to control the wheel-chair motor where a H-bridge circuit was configured. We used the fuzzy control algorithm for the operation of DC motor, which was attached to the electromotive wheelchair and manipulated following the change of the joystick position while a user was controlling the joystick. He also could control the speed and direction of DC motor as well as control position information.

  • PDF