• Title/Summary/Keyword: Electric Field Uniformity

Search Result 65, Processing Time 0.021 seconds

A Study on The Effect of Current Density on Copper Plating for PCB through Electrochemical Experiments and Calculations (전기화학적 해석을 통한 PCB용 구리도금에 대한 전류밀도의 영향성 연구)

  • Kim, Seong-Jin;Shin, Han-Kyun;Park, Hyun;Lee, Hyo-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2022
  • The copper plating process used to fabricate the submicron damascene pattern of Cu wiring for Si wafer was applied to the plating of a PCB pattern of several tens of microns in size using the same organic additives and current density conditions. In this case, the non-uniformity of the plating thickness inside the pattern was observed. In order to quantitatively analyze the cause, a numerical calculation considering the solution flow and electric field was carried out. The calculation confirmed that the depletion of Cu2+ ions in the solution occurred relatively earlier at the bottom corner than the upper part of the pattern due to the plating of the sidewall and the bottom at the corner of the pattern bottom. The diffusion coefficient of Cu2+ ions is 2.65 10-10 m2/s, which means that Cu2+ ions move at 16.3 ㎛ per second on average. In the cases of small damascene patterns, the velocity of Cu2+ ions is high enough to supply sufficient ions to the inside of the patterns, while sufficient time is required to replenish the exhausted copper ions in the case of a PCB pattern having a size of several tens of microns. Therefore, it is found that the thickness uniformity can be improved by reducing the current density to supply sufficient copper ions to the target area.

Analysis of the Output Characteristics of IGZO TFT with Double Gate Structure (더블 게이트 구조 적용에 따른 IGZO TFT 특성 분석)

  • Kim, Ji Won;Park, Kee Chan;Kim, Yong Sang;Jeon, Jae Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-285
    • /
    • 2020
  • Oxide semiconductor devices have become increasingly important because of their high mobility and good uniformity. The channel length of oxide semiconductor thin film transistors (TFTs) also shrinks as the display resolution increases. It is well known that reducing the channel length of a TFT is detrimental to the current saturation because of drain-induced barrier lowering, as well as the movement of the pinch-off point. In an organic light-emitting diode (OLED), the lack of current saturation in the driving TFT creates a major problem in the control of OLED current. To obtain improved current saturation in short channels, we fabricated indium gallium zinc oxide (IGZO) TFTs with single gate and double gate structures, and evaluated the electrical characteristics of both devices. For the double gate structure, we connected the bottom gate electrode to the source electrode, so that the electric potential of the bottom gate was fixed to that of the source. We denote the double gate structure with the bottom gate fixed at the source potential as the BGFP (bottom gate with fixed potential) structure. For the BGFP TFT, the current saturation, as determined by the output characteristics, is better than that of the conventional single gate TFT. This is because the change in the source side potential barrier by the drain field has been suppressed.

The Piezoelectic and electromechanical Characteristics of PZ-PT-PMWS (PZ-PT-PMWS의 압전 및 전기기계적 특성)

  • 홍종국;이종섭;채홍인;윤만순;정수현;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.403-406
    • /
    • 2000
  • The piezoelectric properties and the doping effect of N $b_2$ $O_{5}$ and Mn $O_2$for 0.95PbZ $r_{x}$ $Ti_{x}$ $O_3$+0.05Pb(M $n_{0.42}$ $W_{0.26}$S $b_{0.32}$) $O_3$ compositions have been investigated. In the composition of 0.95PbZ $r_{0.54}$ $Ti_{0.46}$ $O_3$+0.05Pb(M $n_{0.42}$ $W_{0.26}$S $b_{0.32}$) $O_3$the Values Of $k_{p}$ find and $\varepsilon$$_{33}$ $^{T}$ are maximized, but $Q_{m}$ Was minimized ( $k_{p}$ =0.51, $Q_{m}$ =1750). The grain size was suppressed and the uniformity of grain was improved with doping concentration of N $b_2$ $O_{5}$ for 0.95PbZ $r_{0.54}$ $Ti_{0.46}$ $O_3$+0.005Pb(M $n_{0.42}$ $W_{0.26}$S $b_{0.32}$) $O_3$sample. The values of $k_{p}$ increased and the values of $Q_{m}$ slightly decreased when 0.5 wt% of N $b_2$ $O_{5}$ is doped. And the values of $k_{p}$ was the same formation of the N $b_2$ $O_{5}$ dopant when 0.5 wt% of M $n_2$ $O_{5}$ is doped. But the values of $Q_{m}$ was deeply decreased when 0.5 wt% of Mn $O_2$is doped. As a experiment results under high electric field driving, this piezoelectric ceramics are very stable. Conclusively, piezoelectric ceramic compsiton investigated at this paper is suitable for application to high power piezoelectric devices.. devices..ices.. devices..

  • PDF

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Characteristics of InGaAs/GaAs/AlGaAs Double Barrier Quantum Well Infrared Photodetectors

  • Park, Min-Su;Kim, Ho-Seong;Yang, Hyeon-Deok;Song, Jin-Dong;Kim, Sang-Hyeok;Yun, Ye-Seul;Choe, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.324-325
    • /
    • 2014
  • Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.

  • PDF