• 제목/요약/키워드: Electric Continuity

Search Result 40, Processing Time 0.023 seconds

Study on the Electric Continuity Measurements of Green Car for Human Body Safety (친환경자동차의 인체 안전을 위한 전기적 연속성 측정 연구)

  • Kim, Hyang-Kon;Lee, Ki-Yeon;Kim, Dong-Ook;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.351-356
    • /
    • 2009
  • In this study, we analyzed and experimented about electric continuity for human body safety from green cars. And we compared power systems of HEV and examined about human body effect of current and time. We investigated internal and external standards and regulations for human body safety from high voltage electrical equipments. Indirect contact refers to contact between the human body and exposed conductive parts. According to UNECE R100, ISO 23273-3, ISO 6469-3 and Japanese Regulation Attachment 101, electric continuity between any two exposed conductive parts shall not exceed $0.1{\Omega}$. The value of electric continuity was measured below $0.1{\Omega}$ at the actual condition of green car. We expected that the results of these experiments can utilize to data for electrical safety of green car.

Effects of Coulomb Gauge Condition and Current Continuity Condition on 3-Dimensional FE Analysis for Eddy Current Problems (3차원 와전류문제의 유한요소해석에서 쿨롱게이지조건과 전류연속조건의 영향)

  • Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.483-491
    • /
    • 2005
  • To solve the 3D eddy current problems by using FE(finite element) method with MVP(magnetic vector potential) and electric scalar potential, Coulomb gauge condition and current continuity condition have to be considered. Coulomb gauge condition enforced on existing FE formulations to insure the uniqueness of MVP looks unnatural and current continuity condition which can be driven from Ampere's law looks unnecessary. So in this paper the effect of two conditions on FE formulations are investigated in order to help to obtain accurate numerical simulation results.

Unsteady Electroosmotic Channel Flows with the Nonoverlapped and Overlapped Electric Double Layers

  • Kang, Sang-Mo;Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2250-2264
    • /
    • 2006
  • In micro- and nanoflows, the Boltzmann distribution is valid only when the electric double layers (EDL's) are not overlapped and the ionic distributions establish an equilibrium state. The present study has numerically investigated unsteady two-dimensional fully-developed electroosmotic flows between two parallel flat plates in the nonoverlapped and overlapped EDL cases, without any assumption of the Boltzmann distribution. For the study, two kinds of unsteady flows are considered: one is the impulsive application of a constant electric field and the other is the application of a sinusoidally oscillating electric field. For the numerical simulations, the ionic-species and electric-field equations as well as the continuity and momentum ones are solved. Numerical simulations are successful in accurately predicting unsteady electroosmotic flows and ionic distributions. Results show that the nonoverlapped and overlapped cases are totally different in their basic characteristics. This study would contribute to further understanding unsteady electroosmotic flows in micro- and nanofluidic devices.

Calculation of Electric Polarizability of Square Patch for Calculating Reflection Coefficient of Metasurface (메타표면 반사계수 계산을 위한 정사각형 패치의 전기 분극률 계산)

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.594-598
    • /
    • 2018
  • The tangential electric polarizability of a electrically small square patch, which is commonly used in metasurfaces, is calculated using electric potential continuity. Since the potential at the patch surface is not uniform due to the equivalent electric dipole located at the center, there is a problem in that the polarizability is not uniquely defined. To obtain equivalent polarizability, the meshes in the analysis area are divided on the patch surface, and the equivalent polarizability is calculated by averaging the polarizabilities obtained at each point. The results of the proposed method, third-power series approximation, and experimental equations are compared and verified. Finally, the magnitude and phase of the reflection coefficient of patch metasurface calculated by generalized sheet transition conditions(GSTCs) are in good agreement with the HFSS simulation results.

Ignition Characteristics Analysis of Pseudospark Discharge using Fluid Method (유체법을 이용한 유사스파크 방전의 기동 특성 해석)

  • 심재학;주흥진;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.95-98
    • /
    • 1997
  • Theoritical predictions are given of the time dependence of charged particle densities and electric field in a pseudospark discharge. Our medel is based on a numerical solution of the continuity equation for electrons and positive ions and coupled with Poisson's equation for the electric field. From numerical results, we can identify phisical mechanisms that lead to the rapid rise in current in the onset of a pseudospark discharge.

  • PDF

The Characteristics of Electric Shock Accidents and Their Countermeasures for Portable Electrical Tools (이동형 전기기기의 감전재해 특성 및 그 대책)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.21-26
    • /
    • 2017
  • According to the data of Korea Occupational Safety and Health Agency, electric shock accidents during recent 11 years exceeded more than 60% in architecture/other and construction work, the countermeasures for safety are required in the harsh environment of a construction site where moving electric machines and equipments are widely used. The establishment of countermeasure for insulation degradation and defect is required, in consideration of increasing trend for accidents caused by defective insulation among low voltage electrical installation each year. The aim of this study is to propose the policy about portable electrical tool standards and/or worker's safety standards for preventing electric shock accidents on safety workings, and is to develop the technology and the safety device to prevent electric shock for accident prevention reduction through experiments. It obtained the followings through this study; statistical data analysis of late about 10 years of electric shock-related industrial accidents analysis and portable electric tools; safety device development of 'device for testing continuous grounding and power shut-down' to prevent electric shock from portable electric tools. Furthermore, developed results and proposal in this study will help to prevent the electric shock accidents from portable electric tools and will be expected the utilization of policy formulation, educational data and field supplement of the safety device, and etc.

Study on Electrohydrodynamic Analysis of Cylinder Type ESP (원통형 전기집진기의 전기유체역학적 해석에 관한 연구)

  • 조용수;여석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.243-254
    • /
    • 1996
  • The main purpose of this study is to investigate the collection efficiency characteristics of a cylindrical ESP. To do that, it is necessary to analyze the electric field, gas flow field, and mechanism of particle movement by numerical simulation based on EHD model. For a gas flow field, Navier-Stokes equation involving the electric source term was solved by SIMPLE algorithm. In case of the electric field, the current continuity and electric field equations were solved by S.O.R. method. The analysis of particle movement was performed on the basis of PSI-CELL model from the Lagrangian viewpoint. The results showed that the influence on the gas flow field by the electric field is almost negligible in a cylindrical ESP. The particle drift velocity $V_P$ toward the collection surface is increased continuously by the electrostatic force due to the rise of particle charge as the particle is moving to the flow direction and the particle size becomes larger. The collection efficiency is to quitely higher with the increase of applied voltage for the same particle size, while becomes smaller as the inlet velocity is increased.

  • PDF

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Evaluation of Restoration Capability in Radial Primary Distribution System (배전계통의 복구능력 평가방법)

  • Lim, Seong-Il;Ha, Bok-Nam;Lee, Jung-Ho;Cho, Nam-Hun;Lee, Seong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.267-269
    • /
    • 1999
  • One of the main jobs of the operators is to make it sure to have a service continuity in a fault situation. This paper proposes a restoration index which indicates the restoration capability of the feeder in case of a fault. A necessary and sufficient condition for a feeder to have 100% restoration of the outage is also described.

  • PDF

HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING (고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF