• Title/Summary/Keyword: Elasto-viscoplastic model

Search Result 40, Processing Time 0.025 seconds

Elasto-viscoplastic Constitutive Model of Unsaturated Soil based on Average Skeleton Stress (평균골격응력을 이용한 불포화토의 탄-점소성 구성방정식)

  • Kim, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1199-1203
    • /
    • 2008
  • It has been recognized that unsaturated soil behavior plays an importantrole in geomechanics. In the last decade several constitutive models have been proposed and used in the analysis. Many of them, however, are constructed in the frame work of rate independent model such as elasto-plastic one. Although rate dependency is an important characteristics of soil for both saturated and unsaturated soils, very few models have been developed taking account of rate dependency. In the present paper, we have developed an elasto-viscoplastic model considering an effect of suction based on the overstress-type viscoplasticity with soil structure degradation. In the model, we have adopted an averaged pore pressure composed of pore water pressure and air pressure to determine the effective stress.

  • PDF

Soil Stress-Deformation Analysis by Elasto-Plastic Model and Elasto-Viscoplastic Model - Using Back Analysis Method - (탄소성모델과 탄점소성모델을 이용한 지반변형해석 - 역해석 기법의 적용 -)

  • Kwon, Ho Jin;Song, Young Woo;Lee, Won Taek;Byun, Kwang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.199-208
    • /
    • 1993
  • Using several soil parameters which are obtained from the PI-experimental formulas and the back analysis method, the elastic analysis, the elasto-plastic analysis and the elasto-viscoplastic analysis for soil deformation are executed. Comparing the results with those of consolidation test, the indirect estimation method for soil parameters and the suitability of constitutive models are studied. The elastic analysis using back analysis result and the elasto-plastic analysis using the perconsolidation test. The elasto-viscoplastic analysis disagrees with the results of meability coefficient obtained from back analysis are the nearest to the results of the consolidation test. It is inferred that elasto-viscoplastic model is not adequate to the soil of which plasticity index is low.

  • PDF

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.

The Analysis of Three-dimensional Oxidation Process with Elasto-viscoplastic Model

  • Lee Jun-Ha;Lee Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.6
    • /
    • pp.215-218
    • /
    • 2004
  • This paper presents a three-dimensional numerical simulation for thermal oxidation process. A new elasto-viscoplastic model for robust numerical oxidation simulation is proposed. The three-dimensional effects of oxidation process such as mask lifting effect and corner effects are analyzed. In nano-scale process, the oxidant diffusion is punched through to the other side of the mask. The mask is lifted so the thickness of oxide region is greatly enhanced. The compressive pressure during the oxidation is largest in the mask corner of the island structure. This is because the masked area near the corner is surrounded by an area larger than the others in the island structure. This stress induces the retardation of the oxide growth, especially at the masked corner in the island structure.

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay

  • Karunawardena, Asiri;Oka, Fusao;Kimoto, Sayuri
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.233-254
    • /
    • 2011
  • The consolidation behavior of Sri Lankan peaty clay is analyzed using an elasto-viscoplastic model. The model can describe the secondary compression behavior as a continuous process and it can also account for the effect of structural degradation on the consolidation analysis. The analysis takes into account all the main features involved in the process of peat consolidation, namely, finite strain, variable permeability, and the secondary compression. The material parameters required for the analysis and the procedures to evaluate them, using both standard laboratory and field tests, are explained. Initially, the model performance is assessed by comparing the predicted and the observed peat consolidation behavior under laboratory conditions. The results indicate that the model is capable of predicting the observed creep settlements and the effect of layer thickness on the settlement analysis of peaty clay. Then, the model is applied to predict the consolidation behavior of peaty clay under different field conditions. In this context, firstly, the one-dimensional field consolidation of peaty clay, brought about by the construction of compacted earth fill, is predicted. Then, the two-dimensional peat foundation response upon embankment loading is simulated. A good agreement is seen in the comparison of the predicted results with the field observations.

A Temporal Finite Element Method for Elasto-Viscoplasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 탄점소성 시스템의 시간유한요소해석법)

  • Kim, Jin-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • In order to overcome the key shortcoming of Hamilton's principle, recently, the extended framework of Hamilton's principle was developed. To investigate its potential in further applications especially for material non-linearity problems, the focus is initially on a classical single-degree-of-freedom elasto-viscoplastic model. More specifically, the extended framework is applied to the single-degree-of-freedom elasto-viscoplastic model, and a corresponding weak form is numerically implemented through a temporal finite element approach. The method provides a non-iterative algorithm along with unconditional stability with respect to the time step, while yielding whole information to investigate the further dynamics of the considered system.

A Study on Clay Behavior Characteristics Based on Non-Linear Kinematic Hardening Rule (비선형 이동경화법칙에 기초한 점성토의 거동 특성)

  • Kim, Yong-Seong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • Up to now, many constitutive models for clay have been proposed and studied based on the elasto-plastic or elasto-viscoplastic theory and it has been recognized that the effect of time on the loading process is a salient feature. In the present study, cyclic behavior characteristics of clay was studied with a viscoelastic-viscoplastic constitutive model for clay based on the non-linear kinematic hardening rule. In order to examine the behavior of clay several cyclic untrained triaxial tests and also their numerical simulations were performed. As results of that, it was found that the proposed model can well describe cyclic behaviors of clay such as frequency dependent characteristics, and have the high feasibility of numerical simulation for dynamic analysis.

Seismic Response Analysis at Multi-layered Ground During Large Earthquake (대형지진시 다층지반의 지진응답해석)

  • 김용성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.55-64
    • /
    • 2002
  • In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic response analysis. From the seismic response analysis, it was found that the acceleration calculated from the cyclic elasto-viscoplastic model and cyclic viscoelastic-viscoplastic models for clay was in close agreement with the recorded accelerations at the Port Island down-hole array, and the cyclic elastic-viscoplastic and viscoelastic-viscoplastic constitutive models showed little different behavior characteristics near clay layer. Thus, the propriety of viscoplastic model for clay was convinced. Therefore, it can be concluded that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the amplification and also it showed accurate damping characteristics of clay during large event which induces plastic deformation in large strain range.

An Analysis on the Deformation of Clayey Foundation Using Elasto-Viscoplastic Model (${\cdot}$粘塑性構成式을 使用한 粘性土地盤의 變形解析)

  • Lee, Moon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.60-72
    • /
    • 1992
  • This study aims at predicting the behavior of saturated soft clayey foundation subjected to earth structure loads such as tidal dike, embankment etc. by using Biot's consolidation equation coupled with elasto-viscoplastic constitutive model. To validate the computer program developed b author, a case study was performed for the site of Kwang-yang steel works improved by sand drain, where since the beginning of the works, field measurements(settlement, lateral displacement and excess pore water pressure) had been accurately achieved. Comparisons between numerical results and observation values were carried out. The main results obtained are summarized as follows : 1. Settlement and lateral displacement between numerical and observation values show satisfactory accordance. 2. As for the exess pre water pressure, numerical results appear to be larger than observation values, which may be due to the existence of sand seams which were not found during soil investigation. 3. Useful data available for failure prediction of soft foundation can be secured by examining lateral displacement, settlement, exess pore water pressure and stress paths.

  • PDF