• Title/Summary/Keyword: Elasto-plastic Condition

Search Result 98, Processing Time 0.022 seconds

Dynamic analysis of ACTIVE MOUNT using viscoelastic-elastoplastic material model

  • Park, Taeyun;Jung, Wonuk
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 2016
  • The engine mount of a car subjected to a pre-load related to the weight of the engine, and acts to insulate the vibration coming from the engine by moving on large or small displacement depending on the driving condition of the car. The vibration insulation of the engine mount is an effect obtained by dissipating the mechanical energy into heat by the viscosity characteristic of the rubber and the microscopic behavior of the additive carbon black. Therefore, dynamic stiffness from the intrinsic properties of rubber filled with carbon black at the design stage is an important design consideration. In this paper, we introduced a hyper-elastic, visco-elastic and elasto-plastic model to predict the dynamic characteristics of rubber, and developed a fitting program to determine the material model parameters using MATLAB. The dynamic characteristics analysis of the rubber insulator of the ACTIVE MOUNT was carried out by using MSC.MARC nonlinear structural analysis software, which provides the dynamic characteristics material model. The analysis results were compared with the dynamic characteristics test results of the rubber insulator, which is one of the active mount components, and the analysis results were confirmed to be valid.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

A Study on Securing safety through Behavior Analysis of Earth Retaining Wall (흙막이 가시설의 거동 분석을 통한 안정성 확보 방안에 관한 연구)

  • Kim, Kwang-Leyol;Kim, You-Seong;Kim, Seong-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • Recently despite the development of analysis program and construction technologies, collapse at the many earth retaining wall construction site of the structure due to the economic and human damage has occurred. The results of geothechnical investigation studies field, it was found to differ from the results of the original design. There may be errors parameters calculated from the results of ground investigation in such a case. And it can be estimated that it is irrational to behavior analysis of the earth retaining wall were analyzed by utilizing the parameters. And in this study, parameters that affect the earth retaining wall the correlations were analyzed using elasto-plastic method. Analysis method was changed various parameters (cohesion, subgrade reaction coefficient, load condition) applied to the elasto-plastic method. And due to a change in the behavior of earth retaining wall materials were analyzed. As a result, the cohesion greatly affects the behavior of earth retaining wall materials in various parameters. For this reason, the results of the geothechnical investigation, confirmation of the actual ground is very important in the design of the earth retaining wall. And, calculating accurate and reasonable of the cohesion of the various parameters is very important.

A study on the Consolidation Characteristic of Cohesive Soil by Plastic Index (소성지수에 따른 점성토의 압밀특성에 관한 연구)

  • Kim, Chan-Kee;Cho, Won-Beom;Lee, Seung-Lun;Choi, Woo-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.99-109
    • /
    • 2008
  • The standard consolidation tests using the incremental loading technique test (IL) were performed on remolded normal consolidation and undisturbed clay samples to find out the effects of plastic index and loading period on consolidation in this study. The remolded samples used were prepared by mixing Gunsan-Samangum clay with bentonite so that they may have plasticity indexes of 15, 30, 45, and 60%, respectively. The undisturbed clay samples were collected from Inchon, Kwangyang, and Uoolsan. The samples were tested at the condition of 4 different loading periods (1, 2, 4, and 8 days). Settlement, coefficient of consolidation, compression index, secondary compression index, and pore water pressure characteristics were investigated from the plastic index and loading period aspects, and the compression index, coefficient of consolidation, and secondary compression index were formulated in terms of the plastic index and loading. To verify the applicability of proposed equations, the settlements obtained from Terzaghi's theory, modified Cam-Clay model (elasto-plastic model), and the Sekiguchi model (elasto-viscoplastic mode) were compared with the test results. The comparison indicates that the Sekiguchi model incorporating the secondary consolidation characteristic well predicts the results.

A nonlinear Co-rotational Quasi-Conforming 4-node Shell Element Using Ivanov-Ilyushin Yield Criteria (이바노브-율리신 항복조건을 이용한 4절점 비선형 준적합 쉘요소)

  • Panot, Songsak Pramin;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.409-419
    • /
    • 2008
  • A co-rotational quasi-conforming formulation of four- node stress resultant shell elements using Ivanov-Ilyushin yield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force. As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov Ilyushin yield condition with isotropic strain hardening and its asocia ted flow rules. The Ivanov Ilyushin plasticity, which avoids multi-layer integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical examples herein illustrate a satisfactory concordance with test ed and published references.

A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate (극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

Strain-Softening Behavior of Circular Tunnel Excavated in Mohr-Coulomb Rock Mass (Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.495-505
    • /
    • 2006
  • Calculating the distribution of stresses and displacements around a circular tunnel excavated in infinite isotropic rock mass subjected to hydrostatic stress condition is one of the basic problems in rock engineering. While closed-form solutions for the distribution are known if rock masses are considered as elastic, perfectly plastic, or brittle-plastic media, a few numerically approximated solutions based on various simplifying assumptions have been reported for strain-softening rock mass. In this study, a simple numerical method is introduced for the analysis of strain-softening behavior of the circular tunnel in Mohr-Coulomb rock mass. The method can also applied to the analysis of the tunnel in brittle-plastic or perfectly plastic media. For the brittle-plastic case where closed-formsolution exists, the performance of the present method is verified by showing an excellent agreement between two solutions. In order to demonstrate the strain-softening behaviors predicted by the proposed method. a parameter study for a softening index is given and the construction of ground reaction curves is carried out. The importance of defining the characteristics of dilation in plastic analysis is discussed through analyzing the displacements near the surface of tunnel.

The Effectiveness of Weaving Motion and Determination of Optimal Heating Condition in Line-heating (선상가열시 위빙방식의 효율성과 최적 가열조건 결정에 관한 연구)

  • 하윤석;장창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.68-76
    • /
    • 2004
  • Inherent strain method for analyzing deformation of line-heating is substituting experiments of high cost, because of its high accuracy and quickness. Nowadays, the progressing forms of line-heating are not straight moving motions used to traditional studies, but weaving motions which can diversely input heat source. In shipyard, reasons of weaving motions are induction of a special characteristic by water cooling, maximum temperature limitation for keeping plates from melting, and rhythm for workman's maintaining velocity. On this study, a method which can obtain optimal weaving heating condition was presented, some examples were introduced, and the results corresponded to works of shipyard. Lastly, what the specifications of plates on efficiency are is presented, through the quality standard of shipyard and FEM heat transfer simulation. The ultimate purpose of line heating is the automation, so in case of plates which need weaving heating, the optimal heating condition suggested by this study can be used well in designing coil specifications of induction heaters which are heat input sources of new generation.

An Anisotropic Elasto-Plastic Constitutive Model Based on the Generalized Isotropic Hardening Rule for Clays (일반 등방경화규칙에 의거한 점토의 비등방 탄소성 구성모델)

  • 이승래;오세붕
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.17-32
    • /
    • 1994
  • To model the anisotropic behavior of soils in the case of reverse loading, an anisotropic hardening description is proposed on the basis of generalized isotropic hardening(GIH) rule. There is a core of the GIH rule in the allowance of the concept that the center of homology of isotropic hardening can be any proper stress states inside a yield surface. The plastic deformations could be represented for the condition of reverse loading, and an explicit constitutive relationship was formulated by utilizing a simple hardening function. The proposed hardening description has been compared with other anisotropic hardening models. For verification three sets of triaxial test results have been predicted for the drained and undrained behavior of overconsolidated clays and Ko consolidated clays.

  • PDF

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.