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A nonlinear Co-rotational Quasi-Conforming 4-node

Shell Element Using Ivanov-Ilyushin Yield Criteria
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ABSTRACT : Abstract. A co-rotational guasi-conforming formulation of four-node stress resultant shell elements using Ivanov
-llyushin vield criteria are presented for the nonlinear analysis of plate and shell structure. The formulation of the
geometrical stiffness is defined by the full definition of the Green strain tensor and it is efficient for analyzing stability
problems of moderately thick plates and shells as it incorporates the bending moment and transverse shear resultant force.
As a result of the explicit integration of the tangent stiffness matrix, this formulation is computationally very efficient in
incremental nonlinear analysis. This formulation also integrates the elasto-plastic material behaviour using Ivanov - Ilyushin
yield condition with isotropic strain hardening and its associated flow rules., The Ivanov - Ilyushin plasticity, which avoids
multi-laver integration, is computationally efficient in large-scale modeling of elasto-plastic shell structures. The numerical
examples herein illustrate a satisfactory concordance with tested and published references.

HHE0:
KEYWORDS : 4-node shell, Quasi-conforming, Ivanov -Ilyushin

locking behaviour in thin shell and robustness in
shell modeling.

The efforts of many investigators have been Shi and Voyiadjis (2) presented a four-node
quadrilateral C plate element with five degrees of
freedom for geometric nonlinear analysis of plates.

1. Introduction

directed at overcoming the shear-locking problem in
Mindlin-Reissner type 4-node shell elements,

rendering the element effective and reliable for thin
plate and shell applications. Simo and Rifai [1)
developed a family of enhanced assumed strain
(EAS) shell element formulation to improve the
assumed strain shell element in the linear and
nonlinear cases. The EAS shell element shows free

The element formulation was based on the updated
Lagrangian formulation, the von Karman assumption
and the quasi-conforming element method. The
tangent stiffness matrix of the element was given
explicitly without using numerical integration, which
makes the element efficient for nonlinear analysis.

1) d3hdta ARlgAl ~el 3 et vl
2) 2AAA. 329, dsuidta ARRgA et 2
(Tel. 02-970-7254, Fax. 02-948-0043, E-mail : kimd@konkuk.ac.kr)

o=

2 =R o £lg 20089 129 31971 2 RuFAE Eo g
2 Adssy

Txats =27 M20H 35(5A ) 20084 68 409



o E 4 =2l . AT|E

Voyiadjis and Shi (3] extended their work to a
non-linear shell element with five degrees of
freedom per node.

In practical engineering problems, there is a need
for a yield criterion in which the behaviour of the
maximum collapse load of plates or shells is
governed by plasticity. From literature reviews,
there are two noted possibilities of working
conditions: (1) in terms of stress which vary
through the thickness of the shell in which case a
yield criterion such as von Mises is used and (2) in
terms of stress resultant in which Ilyushin's (4) or
Crisfield’s (5] yield criterions are used. The first
attempt to reduce the rigorous efforts involved in
plastic stress calculations using the shell thickness
was made by Ilyushin (4). He incorporated the
resultant stress in the calculation of a perfect
plasticity yielding and proposed a plastic yielding
criterion which is then an explicit function of the
resultant stress. Crisfield [5) improved this criterion
by adding a pseudo hardening effect arising as a
result of the progression of yielding across the shell
thickness. Zeng et al. (6] extended this idea to
isotropic hardening materials using approximate
llyushin’s (4] vyield criterion with iterative
algorithms to predict elasto-plastic resultant stress.
In this case, the plasticity is managed by applying
the von Mises vield condition and Plandtel-Reuss
flow rule to discrete points throughout the
thickness. The actual stress components are
assumed to be the plane stress components at any
level of the thickness.

The ohjective of this paper is to present the
co-rotational formulation of a nonlinear 4-node shell
element based on the quasi-conforming by Kim [(7,8]
and its application to elasto-plastic materials. The
extension of Ivanov's yield criterion developed by
Crisfield (5) to an isotropic hardening material is
proposed in an explicit form of resultant stress.
Numerical examples are also given for both Ivanov’s
and von Mises's yield plasticity. In comparison with
the volume integration in plasticity, which are
generally used in degenerated shell elements, the

computational time is significantly reduced for
nonlinear analysis of shell structures.

2. GEOMETRY OF SHELL ELEMENT

The four node shell element shown in Fig. 1 is
described by the local (r.s.t) coordinate whose origin
is defined at the geometric center of the element.
The geometric center of the element is determined
by using the given global coordinates of the element
nodes.

4
X =YX |/4
¢ (Z J (1)

i=l

where Xc is the global coordinates of the center of
the element and Xi is the global coordinates of node i.

The local coordinate system (r,s,t) is defined by
first determining the vectors passing through the
opposite midpoints of the shell mid-surface, 11 and
12.

x.mier :(X:' +x'-+|)4'{2 (2)

xsideZ = xn‘deu )
xsr’dez 3 xsi’dc4 )H @)

The local coordinate vectors Vr, Vs, Vt are the
found by

V, =1, x1,

:[(vrxll)"'lz:l

: ||(V,x11)+|:
V,=V.xV

(4)

and the local coordinates of node i is
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Fig 1. Mid-Surface Geometry and Local Coordinates of
4 node Shell element

Having defined the local coordinate base vectors,
the- transformation of the incremental displacement

parameters AE,._ Ap, at node i from the element

local coordinates, to the global coordinates, is done
by

A, AU,
AV, AV,
{Aﬁ} Jaw | _[T0 0 |]AW, - AU
= = 4 > =
Aol |Ae, 0 T'||A6,| *|a0],
A, A,
P W (6)
AQ’;. Ao.'i‘
Transformation matrix T is defined as
f#’ 1.? !l'
T = mr m: mf = [vr V.v vr ]
n.n_ A (7

It is important to note that Vt is normal to the
mid-surface of the element and it is independent of
the top and the bottom nodal coordinates.

ojuhcE-g2IM BEXZIE 0[88 4T v|ME FHY A2

3. Strain-Displacement Relationships

The local kinematic relations based on the
corotational displacement can be expressed as
Follows:

Au= AT+ t(Ach + %a@,a&a, J

Av= A%_I[Aa, _%A;,;SAJP,]
-~ ~ (8)
Aw = Aw(r,s)

The linear and non-linear part of the local
incremental Green strain can be determined using
the kinematic relation expressed in Eq. (8). In the
quasi-conforming technique (QCT), the element
strain fields are approximated using polynomials and
are integrated using string functions or boundary
displacement interpolation functions. The starting
point of the quasi-conforming element is to
interpolate element strain fields in terms of the
undetermined strain parameters. Strains De is
approximated as

Aé= PAuzB{A‘f}

A 9)

where P are chosen strain interpolation polynomial

functions, Da are undetermined strain parameters

and B is the strain-displacement matrix. Letting W
be the test function, then

[W(aé-Paa)dQ=0
Q (10)

would be the weak form. The test function is
taken as W = PT. Da can then be determined by
carrying out the integration.

M:A-Ic{ﬂ

Ap (11
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where

_ T Al _ Tan
A_é[(P P)dQ o G{Aé}—“!'[P agjaq

Substituting a in (11) to (9) defines the strains in
terms of the element displacements.

Al |
=PA'G{

Ae=B{ _
Ag A (13)

In terms of the global displacement vector,
equation (13) is written as

. U U
ae=B17 AV - paigrr A
O A0

(14)

T

¢ 18 a diagonal matrix composed of T defined in

equation (7)., AU and A® are global displacement
vectors. Using the relation of strain-displacement
defined above, the element stiffness can be
determined.

4. Elasto-plastic materials using Ivanov's

vield criterion with isotropic hardening
The present shell element uses resultant
membrane forces (N), moments (M) and transverse
shear forces (Q) in obtaining the integration of
stresses through the thickness, Ivanov's yield
criteria which was suggested by Crisfield [5) relates
to the six resultant forces and moments in a shell

element (N> N NGMG MM 1t s extended
to take into account the isotropic hardening effects.
The major advantage of this formulation is
significantly less time consuming when the stiffness
matrix and internal load vector are formulated by
pre-integration through the thickness. In the

formulation of Ivanov’s yield criterion, the predictor
corrector method with sub increments is used.

The following Ivanov’s yield criterion, f will give
more accurate approximation than Ilyushin’s [4] full
section yield surface by using higher order terms in
the yield function.

SR DN R (S o 4 N
f- 1 Lo? R cch e s MR M
Q+3Q +7Q%+Qm 4(Q +048Q)) 7 (15)

Where, Q: Qm th are the quadratic stress
intensities.
. N . 16M .. 4MN
Q‘-tE T gttt .Q"“_ at’ (16)
N=N?+N?-N,N, +3N? a7)
M=M!+M?-MM, +3M? (18)

MN=MN, +MN, —~MN - LMN +3M N
o Tl 3 2 r''s 2 s 'r ™ n(lg)

N={N,N,N_ },M={M M M _} (20)

TN Pler (21)

Where, ®y is uni-axial vield stress and t is the
shell thickness.

In the predictor corrector method, the incremental
stress resultant force (trial) can be calculated by
assuming the elastic loading as follow:

{AN }:D“ A%..,
AM Ak (22)
Where, D is the elastic strain stress rigidity

matrix after integrating through the thickness.

During an increment of the resultant forces and
moments, the elastic predictor stress resultant
vector may bring the stress state outside the yield
surface. The computation of contact stress state
(transition from elastic to plastic behaviour) is
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needed to find the amount of elastic strain
increment. The factor r which is approximated as ‘a
factor- 1’ times the total incremental strain is
required to find the strain increments that caused
the stresses that have reached the yield surface
(only due to elastic loading).

At the contact stress state, the yield function

f"_'f(Qf’an’Q;n'av):O. Therefore, the factor r
can be determined by solve the following equation:

f(Q(N +raN),Q_{M+rAM),{1n{M+rAMN+rAN),c§):0{23)

By means of associate flow rule, the direction of
the plastic strains are assumed to be normal to the
vield surface, which can be determine by
differentiate the yield surface. Applying the chain
rule the normal vector can be derived as follows:

of =X an+ A am X 00 45 A2 G
AN M dw g, e (24)
f,'AN +1,, B o ‘”ﬁi;aép:o
00 A e 60, de. (25)

Where Aé: is the incremental effective plastic
strain.
The derivatives of yield function used in Eq. (24)

g =f a  Of o
and (25), "N, "M, 3a and ox.. can be

calculated as follows:

sl Q 1 (@, -Qu) |o
N = +
4(Q +0.48Q)) 4(Q +048Q )

BN

1 1 ﬁQ
\[ Qieqz 2(Q+o4sQ) [N (2)

(e -a7) |a

(Q +048q ) | M

e 11 Q. 1 Q ;
i e (@ 10

.
™ (27

o i : 1
e Tom3)
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, (@ -ql)
[leaso_}

o

fa

1,19 1 Q

2 4J1&’+0’ 4(0 +u4w]

i‘l

" 1 1 Q.
i Loz "2(q +048q ) | 2 (28)
.
da. 052[ ]1 Exp2New
OKeps 1’ i (29)

Therefore, the incremental plastic strain can be
determined as follows:

Ae; =AM
Ak: = AL, (30)

where Al is the plastic strain multiplier which
can be calculate using concept of plastic work done:

Q' Aee

AL =——F
N'f, +M'f,, (31)

Ap - - .
where, Ae. is an effective stress and effective
incremental plastic strain.

The effective plastic strain increment Aé: can be
calculated by substituting Eq. (26)-(29), (30) and
(31) into Eq. (25).

(N1, + ML, )

of Bcr
o, |ml+nl+11-B——
’ %a (32)

~p
Ae. =

- bl -
{1 £, D Aes + :_2 f,'D*Ax,
e

3
_ T, T _l e ory e
I1=2h(N"f, +M'f,, ), mI-EI‘,TD fy, 01 =t DT, (99

where, the superscript t indicate the total strain
components.

The elastic incremental stress resultant forces-
strain laws are assumed to be linear in nature and
by applying it, incremental stress resultant forces
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can be calculated as follows

~f ~p
AN =tD* [Ae, —Ae; }

3

AM =1t—2D’ [AE: ~Axh ] (34)

Substituting the plastic strain increments in Eq.
(30), (31) and (32) into Eq. (34), the constitutive
relationship between the increments of the stress
resultant forces and moments, and the increments of
total strain increment that governs the plasticity
can be formulated as follows:

{AN}_[C‘ Cz} Ae,
AM] [C* C|ag. (35)

Where the tangential elasto-plastic modular
matrices considering the isotropic strain hardening
can be defined as follows:

C=t[1 LEA'DF
[nﬂ+n1+11—i;£$
0. o
c 'L, D
l2[ml+nl+lj—l'3§ af']
% P
c-Lpli thh T
= e (36)
12| ml+nl+11-B———
. oy

5. EQUATION OF MOTION

In formulating the new shell element, an updated
Lagrangian formulation was adopted. The linearized
equation of motion, is expresses as

[1Cpre, d0e,d'V + [ 17,002, d'V =¥ R~ ['7,ohe,d'V
i (37)

v

Cr;'rr is the component of the constitutive tensor,
]
Tyis the component of the Cauchy stress tensor.

"R s the external virtual work expression, and

Ae. and QE

i i are the incremental linear and
nonlinear part of the strain tensor, respectively.
Assuming constant thickness during deformation,

(37) may be expressed as

b [ j'(aae‘,m, +dAel BAe, +dhe|BAe, +dAe] DAe, + dhe] Ade, }drds] +

wlem| [y

}:[f(N'&\s_ +M'GAE, +Q’ah.=..u}drdv}= "R

o T r T
%J{&ehm +OAeLN + el Q) drds 58)

6. Numerical Example

The present nonlinear formulation of 4-node
quasi-conforming shell element (XSHELL-4QSI) is
implemented into the general purpose Nonlinear
Dynamic  Finite Element Package, XFINAS,
developed in AIT, for the PC. XFINAS is an
extended version of the nonlinear finite element
package FINAS, developed in Imperial College,
London. Results to the analysis of static non-linear
problems using XSHELL-4-QSI is presented to
validate the numerical performance of the nonlinear
formulation. The Window version of XFINAS runs on
a personal computer with Graphical software GiD
developed by CIMNE.

6.1 Large-deflection elasto-plastic analysis of an
imperfect rectangular plate under in-plane
loading

A simply supported plate subjected to in-plane
loading is analyzed. The plate undergoes both large
deflections and plasticity. An initial out-of-plane
“created equivalent to

w=wasin(7:x;"a)sin(:ry,"b)_ Because of symmetry,

imperfection was

only one quarter of the plate was used in the model
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with an 5xbmesh. The tolerance for convergence
used was 0.0005. Twelve displacement increments
were used with a maximum of 2 iterations of MNR
per increment. This makes the present formulation
more efficient that the reference by Javaherian and
Dowling (9] used for comparison, which used a
tolerance of 0.003, 15 displacement increments for
the same totaldisplacement and a maximum of 5
MNR iterations per increment.

¥

a/b = (L.8TH
bt = 80
t = 0.003175 m

b E = 2.062el IN/mm’
n=03

X sy = 2,50e8 N/ mm”
p—

w, = 0.001b at the
center

Fig 2. Plate geometry and material properties.
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6.2 Large-deflection elasto-plastic analysis of
discretely stiffened plate under in-plane
loading.

A stiffened flat plate subjected to in-plane loading
was analysed. Only half of the stiffened plate was
analysed because of symmetry. A mesh of 16x12 was
made for the plate and 4x12 for the stiffeners.
Plasticity assumption is the same as that of Webb
and Dowling (11). A full depth yield criterion was
used for the plate while stiffeners are of multi-layer
approach. The solution obtained are plotted with
those of Webb and Dowling (11) and Dhajani [10)
whose solutions were based on finite difference. A
test result for the same plate indicates a normalized
peak load of 1.009. The difference between the
present analysis and the test results may be
attributed to the residual stresses and actual
imperfections of the specimen.

tp =5.73mm, hw =60.3mm
tw=603mm,  0,=348N/mm°,
E=205000N/mm’, v = 0.3

Iw Weld

J‘. 5“11—--.;1.._.:.——4 _:l_t"

; : walx.y) = 1.03 sin{my/Lx) sin(my/Ly)
L ; SECTION XX
X
y(v)
Fig 6. Stiffened plate geometry and material properties.

Inplane load/Yield load
5 o
-~ -

e

9 05 1 15
Canter Displacement/Thickness

» Javaherian & Dowding |1985)
Geo &Mat N Linear
& lavaborian&Dowling 1385)
Gegm N Linear
« NSHELLA-05)

Fig 4. Normalized Out-of-Plane Force-Displacement
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Fig 6. Normalized average in-plane stress vs. average
in-plane strain of stiffened plate. Inset: deformed shape
(x10) with in-plane stress contour.
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Pre-buckling shape (x20)

Limit point shape (x20)

Fig 7. Deformed shape of stiffened plate under axial compression

6.3 Elasto-plastic Buckling of Imperfect Stiffened
Curved Panel

The choice of a suitable imperfection shape is the
most difficult task in the postbuckling analysis of
shell structures. In order to identify the imperfection
sensitivity of stringer stiffened shells under axial
and pressure loading, Agelidis [12] carried out a
large parametric study of stiffened cylindrical shell
covering a broad range of geometries used in the
offshore structural engineering. In the following, an
imperfect stiffened curved panel subjected to inplane
loading is analyzed. The model adopted is Agelidis
panel widely used for steel shell buckling problem,
in Imperial College, London. Considering large
deformation elasto-plastic analysis of one octant of a
cylinder with stiffener, the stiffened panel was
modeled with 96 shell elements.

For comparison, the results with XSHELLA-QSI
were plotted with those obtained using the 8-node
co-rotational element (XSHELL8-ANS). For the
8-node elements, the stiffened panel was model
using 24 elements as shown in Fig. 8. The pre and
post buckling behaviour of the panel are similarly
predicted by both elements.

In this study, assuming an odd number of half
waves for the deflection in the longitudinal direction
only of the half panel between the rings was
modeled. In the present study, it was decided to
select imperfection sl‘iapes determined from a single
half sine wave in circumferential and longitudinal
directions. The numerical knockdown' factor (defined
here as the limit load obtained from non-linear
analysis) is 0.51 for an imperfection amplitude equal
to 10% of the thickness.

416 szzezsts =23 HM20A 35(5A 943) 2008 68



[arrows represent restrained d.o.f. |
along model boundaries.

Fig 8. Geometry of Stiffened Curved Panel
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Fig 9. Load-deflection curve of Stiffened Curved Panel
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6.4 Pinched Elasto-Plastic Cylinder with Isotropic
Hardening

A thin cylinder, pinched at the mid sections is
analyzed for large displacement, rotation and
elasto-plastic behaviour. Two methods have been
used for the analysis, elasto-plastic with Ivanov and
elasto-plastic multilayer with Von Mises vield
criterion with isotropic hardening. The cylinder has
two end diaphragms. It was modeled using only one
octant with a 32X32 mesh of four-node elements.
The cylinder geometry and material properties are
shown in Figure 11. The solution by Simo and
Kennedy (13) using generalized Ilyushin-Shapiro
elostoplastic model and Brank, et al. (14] using von
Mises yield criterion with seven integration points
are also shown with the present results, Figure 12.
The same snap-through response observed by Brank,
et al. is also seen in the present analysis with
similar limit points and stiffening behaviour. The
geometry at different stages of deformation is shown
in Fig.13

Limit point (x20)

Fig 10. Deformed shape of elasto-plastic stiffened cylinder under axial compression
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Geometry
L = 300.0 (half
length)
R =300.0
t=3.0

Material Properties
E =3000.0

v=0.3

Fig 11. Pinched elasto-plastic cylinder- geometry and
materials properties

= Brank et al (1897) /]
-
A Simo and Kenedy (1992) f!

i
—— XSHELL4-QSI-ELASTO 74
PLASTIC IVANOV o~

===-XSHELL-4-QSI-ELASTO Vi
PLASTIC MULTILAYER 7

+ Pointsab

0 50 100 150 200 250 300
Displacement at Loaded Point

Fig 12. Pinched elasto-plastic cylinder-displacement under
force

point a

7. Concluding Remarks

The nonlinear formulation of shell element is
already developed through the quasi-conforming
technique. The highlight of the quasi-conforming
technique is not to use numerical integration but to
use explicit integration and obtain stresses at the
nodal points accurately. All the nonlinear problems
which use the co-rotational method converge very
well and show the full load-deflection curves. The
present resultant shell element involving pre-
integration through the thickness takes into account
of the explicit plasticity of Ivanov's yield condition
with isotropic strain hardening. By avoiding the
multi-layer integrations, this method is computationally
very efficient in the large scale of plastic modeling
of the thin shell structures. The load-deflection
curve and deformed shape show very good
performance with references.

zALe 2
o] d7¢ YHuFy WFNPeHIeY YW

AFNEAIR] (067434 D05) Aol 2l3jed o] Fojx oni,
AL oo FAHE =7yt

point b

Fig 13. Pinched elasto-plastic cylinder- deformed configuration
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