• Title/Summary/Keyword: Elastic spring supports

Search Result 20, Processing Time 0.022 seconds

A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉강성을 고려한 차량-레일계의 연성진동해석)

  • 류윤선;조희복;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

A Couple Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉 강성을 고려헌 차량-레일계의 연성 진동 해석)

  • 류윤선;조희복;김사수
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.953-958
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

Coupled Vibration of Moving Mass-Elastically Supported Beam Considering the Contact Stiffness (An Ananlytical Model of the Contact Force Fluctuation between Wheel and Rail) (이동질량-탄성지지무한보의 연성진동해석 (차륜.레일간의 접촉력 변동의 해석모델))

  • ;曄道 佳明;須田 義大;大野 進一
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.197-200
    • /
    • 1995
  • Corrugation of railway track can be caused by the various dynamic behavior of travelling wheels and track. In this paper, the coupled vibrations of travelling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibrations, the track supported by the sleepers and the traveling wheel are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered betwen the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile of the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-moving mass system. It may be thought to a development of railway corrugation.

  • PDF

Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Hozhabrossadati, Seyed Mojtaba
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2018
  • This paper investigates the free vibration analysis of double-beam system coupled by a two-degree-of-freedom mass-spring system. In order to generalize the model, the main beams are assumed to be elastically restrained against translation and rotation at one end and free at the other. Furthermore, the mass-spring system is elastically connected to the beams at adjustable positions by means of four translational and rotational springs. The governing differential equations of the beams and the mass-spring system are derived and analytically solved by using the Fourier transform method. Moreover, as a second way, a finite element solution is derived. The frequency parameters and mode shapes of some diverse cases are obtained using both methods. Comparison of obtained results by two methods shows the accuracy of both solutions. The influence of system parameters on the free vibration response of the studied mechanical system is examined.

Free Vibrations of Shear Deformable Circular Arches with Rotationally Flexible Supports (전단변형을 고려한 회전 가능한 지점을 갖는 원호 아치의 자유진동)

  • Oh, Sang-Jin;Yoon, Hee-Min;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1181-1184
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with rotationally flexible supports, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies and the corresponding mode shapes are obtained over a range of non-dimensional system parameters: the subtended angle, the slenderness ratio, and the rotational spring stiffness.

  • PDF

Free Vibrations of Non-Circular Arches with Elastic Supports (탄성지점을 갖는 변화곡률 아치의 자유진동)

  • Oh, Sang-Jin;Kim, Gwon-Sik;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.340-343
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of non-circular arches with the translational (radial and tangential directions) and rotational springs at the ends, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies for the parabolic geometry are calculated over a range of non-dimensional system parameters: the arch rise to span length ratio, the slenderness ratio, and the translational and rotational spring parameters.

  • PDF

On the Description of Constrained Static Behavior of Continuous System

  • Eun, Hee-Chang;Lee, Min-Su;Bae, Chung-Yeol
    • Architectural research
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • The static behavior of continuous system is described by the elastic curve method or is approximately analyzed by a finite element method to be modeled as a discrete system. If a continuous system is constrained by linear constraints which restrict its static behavior, its behavior can be approximately described by the finite element method. It is not easy to describe the constrained behavior by continuous coordinate system. Starting from the generalized inverse method provided by Eun, Lee and Chung, this study is to expand the equation to the continuous systems, to perform the structural analysis of the beam under a uniform loading with interior spring supports, and to investigate the validity of the proposed method through applications.

Free vibration analysis of beams with various interfaces by using a modified matched interface and boundary method

  • Song, Zhiwei;Li, Wei;He, Xiaoqiao;Xie, De
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • This paper proposes a modified matched interface and boundary (MMIB) method to analyze the free vibration of beams with various interfaces caused by steps, intermediate rigid and elastic supports, intermediate concentrated masses and spring-mass systems, etc. A new strategy is developed to determine the parameters in the iterative computation of MMIB. The MMIB procedures are established to deal with boundary conditions and various interface conditions, which overcomes the shortcoming of the traditional MIB. A number of examples are utilized to illustrate the performance of MMIB method. Numerical results indicate that the MMIB method is a highly accurate and convergent approach for solving interface problems.

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model (쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석)

  • Jong wan Yun;So yeon Moon;Sang-Shin Park
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.