• Title/Summary/Keyword: Elastic particle

Search Result 190, Processing Time 0.025 seconds

Prediction of Long-Term Settlement of Sands Containing Carbonates (탄산염 성분이 포함된 사질토의 장기침하 예측)

  • Hwang, Woong-Ki;Lee, Yong-Su;Hwang, Joong-Ho;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.993-998
    • /
    • 2009
  • This study was conducted to propose the model that is able to predict long-term settlement of sands containing carbonates. We can observe that in addition to the initial elastic compression, a considerable additional compression occurs with long-term period in some sands. The compressibility of sands is significantly dependent on particle characteristics. Some sands have many pores and particularly has an angular shape. To predict of long-term settlement of these sands which contain carbonates, first of all a variety of tests which are to assess chemical, physical and compression characteristics of these sands were conducted. Second, in order to know settlement with time, the time parameter was determined by analyzing the measured data obtained from $\bigcirc\bigcirc$ area. The measured settlement of this area shows that in addition to the initial elastic compression, a considerable additional compression occurring with time. It was caused by the crushing, shattering, and rearrangement of particles, which were real phenomena in sandy soils under loading condition. Based on this case study, we proposed that a simple method is able to predict settlement with time of sandy soil containing carbonates.

  • PDF

GEOPHYSICAL CHARACTERIZATION OF MARINE CLAYS - FROM GEOTECHNICAL PARAMETER ESTIMATION TO PROCESS MONITORING -

  • Choi, Gye-Chun;Chang, Il-Han;Oh, Tae-Min;Kim, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.37-46
    • /
    • 2010
  • Marine clays are soft soil deposits having complicated mineralogy and formation characteristics. Thus, characterization of its geotechnical behavior has been a main issue for geotechnical engineers. Nowadays, the importance and applications of geophysical exploration on marine clays are increasing significantly according to the accuracy, efficiency, and reliability of geophysical survey technology. For marine clays, seismic survey is effective for density and elasticity characterization, while electro-magnetic wave provides the information about the fluid conductivity phenomena inside soil. For practical applications, elastic wave technology can evaluate the consolidation state of natural marine clay layers and estimate important geotechnical engineering parameters of artificially reclaimed marine deposits. Electrical resistivity can provide geophysical characteristics such as particle cementation, pore geometry shape, and pore material phase condition. Furthermore, nondestructive geophysical monitoring is applicable for risk management and efficiency enhancement during natural methane gas extraction from gas hydrate-bearing sediments.

  • PDF

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai;A. Yvaz;Mujahid Ali;Stanislav Strashnov;Mohamed Hechmi El Ouni;Mohammad Alkhedher;Arameh Eyvazian
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

Homogenized Elastic-plastic Relation based on Thermodynamics and Strain Localization Analyses for Particulate Composite (열역학 기반 내부 변수를 이용한 균질화 탄소성 구성방정식 및 입자강화 복합재에서의 소성변형집중)

  • S. J. Yun;K. K. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.18-35
    • /
    • 2024
  • In the present work, the evolution rules for the internal variables including continuum damage factors are obtained using the thermodynamic framework, which are in turn facilitated to derive the elastic-plastic constitutive relation for the particulate composites. Using the Mori-Tanaka scheme, the homogenization on state and internal variables such as back-stress and damage factors is carried out to procure the rate independent plasticity relations. Moreover, the degradation of mechanical properties of constituents is depicted by the distinctive damages such that the phase and interfacial damages are treated individually accordingly, whereas the kinematic hardening is depicted by combining the Armstrong-Frederick and Phillips' back-stress evolutions. On the other hand, the present constitutive relation for each phase is expressed in terms of the respective damage-free effective quantities, then, followed by transformation into the damage affected overall nominal relations using the aforementioned homogenization concentration factors. An emphasis is placed on the qualitative analyses for strain localization by observing the perturbation growth instead of the conventional bifurcation analyses. It turns out that the proposed constitutive model offers a wide range of strain localization behavior depending on the evolution of various internal variable descriptions.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Simulation of Explosion of the Semi-Fluid with Strong Elasticity Applying Coulomb-Mohr Theory (쿨롱-모어 이론을 이용한 강탄성 반유동체 폭발 시뮬레이션)

  • Kim, Gyeong-Su;Sung, Su-Kyung;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.143-152
    • /
    • 2015
  • Unlike simulating general 'particle-based fluid explosion', simulating fluid with elasticity requires various experimental methods in order to show the realistic deformation of the matter. The existing studies on particle-based viscoelastic fluid only focused on matters' plastic deformation which can be found in mud or paint, based on the maximum distortion energy theory and maximum shear stress theory. However, these former researches could not simulate the brittle deformation which can be seen from silicon or highly elastic rubber when great external forces above limits are applied. This study suggests a brittle simulation method based on the Coulomb-Mohr theory, the idea that a yield occurs when maximum stress on a matter reaches to its rupture stress. This theory has a significant difference from the existing particle-based simulations which measures the forces on a matter by length or volume. Using a strong-elastic semifluid which Coulomb-Mohr theory is applied, realistic deformation process of a matter was observed as its forced surface reached to the rupture stress. When semifluid hit the ground, the impact of deformation can be explained by using Coulomb-Mohr theory.

The Study on the Fundamental Character of Crushed Stone Concrete (부슨돌 콘크리트의 기초적 성질에 관한 연구)

  • 장동일;문한영;박제선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.3
    • /
    • pp.2342-2348
    • /
    • 1971
  • In concrete, the mater over aggregate is ever demanding each year in paralled with rapid development of Construction works from a couple of years ago. Want of most of them which is river gravel among aggregate has made us uneasy to get good gravel in quality. So far, we have counted on gravel, however, the time to turn the use of normal concrete into that of crushed concrete is closing at hand, I think. According to the results of study by Kaplan, Zeitman, Murdock, Hanada, Yamamodo, the shape of aggregate particle have a great effect on workability of concrete, as we know, is well known to the world. Crushed stone, particularly, is inconvenient to handle on account of jagged, angled particle form and rugged surface structure, give rise to inpediments in works, its unit water stands at about $15-20kg/m^3$, and w/c shows the increasing rate of approximately 5-10%, but it is unsuitable to use in terms of regidity. In order to research all of these, I have experimentalized and reviewed the physical character of aggregate and the regidity of concrete, in addition, its relative ratio of the elastic disposition as to gravel and crushed stone.

  • PDF

Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization

  • Wu, Yao;Yao, Daojin;Xiao, Xiaohui
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2493-2503
    • /
    • 2018
  • Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.