DOI QR코드

DOI QR Code

Simulation of Explosion of the Semi-Fluid with Strong Elasticity Applying Coulomb-Mohr Theory

쿨롱-모어 이론을 이용한 강탄성 반유동체 폭발 시뮬레이션

  • 김경수 (인하대학교 대학원 컴퓨터정보공학과) ;
  • 성수경 (에프엑스기어) ;
  • 신병석 (인하대학교 대학원 컴퓨터정보공학과)
  • Received : 2015.09.28
  • Accepted : 2015.10.15
  • Published : 2015.10.20

Abstract

Unlike simulating general 'particle-based fluid explosion', simulating fluid with elasticity requires various experimental methods in order to show the realistic deformation of the matter. The existing studies on particle-based viscoelastic fluid only focused on matters' plastic deformation which can be found in mud or paint, based on the maximum distortion energy theory and maximum shear stress theory. However, these former researches could not simulate the brittle deformation which can be seen from silicon or highly elastic rubber when great external forces above limits are applied. This study suggests a brittle simulation method based on the Coulomb-Mohr theory, the idea that a yield occurs when maximum stress on a matter reaches to its rupture stress. This theory has a significant difference from the existing particle-based simulations which measures the forces on a matter by length or volume. Using a strong-elastic semifluid which Coulomb-Mohr theory is applied, realistic deformation process of a matter was observed as its forced surface reached to the rupture stress. When semifluid hit the ground, the impact of deformation can be explained by using Coulomb-Mohr theory.

일반적인 입자 기반 유체 폭발 시뮬레이션과는 다르게 탄성을 지닌 유체의 폭발을 시뮬레이션 하는 경우 물질의 사실적인 변형을 표현하기 위한 여러 가지 특수한 방법이 필요하다. 기존 입자 기반의 점탄성체 연구에서는 물체가 힘을 받아 압축이 되었을 때 한계치 이상의 힘을 받으면 변형되는 최대 변형에너지 이론과 물체의 부피가 일정 수준 이상 줄어들었을 때 변형되는 최대 전단응력 이론을 이용하여 진흙이나 페인트 같이 소성변형을 하는 물체의 변형을 다루었지만 실리콘이나 탄성이 강한 고무줄과 같이 한계치 이상의 힘을 받았을 때 여러 부분으로 쪼개지는 취성변형을 표현하지는 못하였다. 본 논문은 물체가 받은 힘을 변형된 길이나 부피로 표현한 기존의 입자 기반 시뮬레이션과 달리, 힘을 받았을 때 물체에 발생하는 최대응력이 물체의 파단응력에 도달하였을 때 항복이 일어난다는 취성 변형에 적합한 쿨롱-모어 이론을 제안한다. 쿨롱-모어 이론을 적용한 강한 탄성을 가진 반유동체가 힘을 받은 경계면이 파단응력에 도달하였을 때 물체가 현실감 있게 파괴되는 과정을 표현할 수 있음을 확인하였다. 반유동체가 지면에 부딪혀 힘을 받았을 때 쿨롱-모어 이론을 적용하여 물체의 파괴를 표현하였다.

Keywords

References

  1. N. Foster, and R. Fedkiw. "Practical animation of liquids. "Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM, pp.23-30, 2001.
  2. M. Muller, D. Charypar, and Markus Gross. "Particle-based fluid simulation for interactive applications." Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, pp. 154-159, 2003.
  3. N. Foster, and D. Metaxas. "Realistric animat ion of liquids. "Graphical Models and Image Processing, pp. 471-483, 1996.
  4. S. Clavet, P. Beaudoin, and P. Poulin. "Particle-based Viscoelastic Fluid Simulation." Euro graphics/ACM SIGGRAPH, pp. 219-228, 2005.
  5. L. B. Lucy, "A numerical approach to the testing of the ssion hypothesis." Astronomical Journal, pp. 1013-1024, 1977.
  6. R. A. Gingold, and J. J. Monaghan. "Smoothed particle hydrodynamics : theory and application to nonspherical stars." Monthly Notices of the Royal Astronomical Society, pp. 375-389, 1977.
  7. W. T. Reeves. "Particle systems - a technique for modeling a class of fuzzy objects." A CM Transactions on Graphics, pp. 91-108, 1983.
  8. G. Miller, and A. Pearce, "Globular dynamics: A connected particle system for animating viscous fluids." Computers & Graphics pp. 305-309, 1989.
  9. M. Desbrun, and M-P Gascuel, "Smoothed particles: A new paradigm for animating highly deformable bodies." Computer Animation and Simulation, pp. 61-76, 1996.
  10. J. P. Morris, "Simulating surface tension with smoothed particle hydrodynamics." International Journal for Numerical Methods in Fluids, pp. 333-353, 2000.
  11. S. Premoze, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker, "Particle-based simulation of fluids." Computer Graphics Forum, pp. 401-410, 2003.
  12. S. Koshizuka, and Y. Oka, "Moving-particle semi-implicit method for fragmentation of incompressible fluid." Nuclear Science Engineering pp. 421-434, 1996.
  13. M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, "Point based animation of elastic, plastic and melting objects." SIGGRAPH/ Eurographics Symposium on Computer Animation pp. 141-151, 2004.
  14. K. Steele, D. Cline, P. K. Egbert, and J. Dinerstein, "Modeling and rendering viscous liquids." Journal of Computer Animation and Virtual Worlds, pp. 183-192, 2004.
  15. R. G. Budynas, and J. K. Nisbett, Shigley's mechanical engineering design, McGraw-Hill, New York, 2011.
  16. S. Jeong, S. Park, D. Choi and G. Yoon, "Development of topology optimization method considering static failure theories of ductile and brittle materials", The Korean Society of Mechanical Engineers, pp. 531-535, 2011.
  17. D. R. Askeland and P. P. Rhule, The Science and engineering of materials, ThomsonLearning, Boston, 2006.
  18. S. Sung, G. Kim and B. Shin, "Simulation of Explosing Using the Ideal Viscoelastic Object Yield Conidition.", Journal of Korea Game Society, pp. 49-58, 2014.