• 제목/요약/키워드: Elastic panels

검색결과 104건 처리시간 0.025초

Assessment of negative Poisson's ratio effect on thermal post-buckling of FG-GRMMC laminated cylindrical panels

  • Shen, Hui-Shen;Xiang, Y.
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.423-435
    • /
    • 2021
  • This paper examines the thermal post-buckling behaviors of graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical panels which possess in-plane negative Poisson's ratio (NPR) and rest on an elastic foundation. A panel consists of GRMMC layers of piece-wise varying graphene volume fractions to obtain functionally graded (FG) patterns. Based on the MD simulation results, the GRMMCs exhibit in-plane NPR as well as temperature-dependent material properties. The governing equations for the thermal post-buckling of panels are based on the Reddy's third order shear deformation shell theory. The von Karman nonlinear strain-displacement relationship and the elastic foundation are also included. The nonlinear partial differential equations for GRMMC laminated cylindrical panels are solved by means of a singular perturbation technique in associate with a two-step perturbation approach and in the solution process the boundary layer effect is considered. The results of numerical investigations reveal that the thermal post-buckling strength for (0/90)5T GRMMC laminated cylindrical panels can be enhanced with an FG-X pattern. The thermal post-buckling load-deflection curve of 6-layer (0/90/0)S and (0/90)3T panels of FG-X pattern are higher than those of 10-layer (0/90/0/90/0)S and (0/90)5T panels of FG-X pattern.

현수시스템을 활용한 하수유방용 브래지어 설계 (Brassiere Design for Drooping Breasts Utilizing Suspensory System)

  • 손부현;민유숙;권수애
    • 한국의류학회지
    • /
    • 제39권4호
    • /
    • pp.560-575
    • /
    • 2015
  • This study developed brassieres using a suspension system with the elastic panel on the inside of the brassiere cup to replace the wires for 20s women with large and elongated breasts. The following results were obtained by analyzing clothing pressure and a subjective evaluation of brassieres with elastic panels at the bottom or side of the various reduction ratios and with the shoulder straps of the brassiere. Brassieres with dual panels (rather than with only the bottom panel) lowered clothing pressure as well as improved wearing comfort and function. Compared to brassieres with a panel of 10%, brassieres with a panel of 15% lowered clothing pressure and provided superior wearing comfort. In this case, the higher the reduction ratio of the side panels increased clothing pressure on the shoulder, but provided superior well-fit, bust-up, and vibration restraint. To reduce the reduction ratio of the side panel decreased clothing pressure on the shoulder and decreased support functions. Therefore, the reduction ratio of the side panels should be determined by preferable functions such as wearing comfort that depend on the needs of the wearer. It is suggested that a brassiere with a dual elastic panel can replace the brassiere wire.

경량전철 2주형 판형교 복부판의 탄성좌굴 특성 (Elastic Buckling Characteristics of Plate Girder Web Panel)

  • 황민오;성택룡;윤태양;이안호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.344-351
    • /
    • 2000
  • In the design of plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear, pure bending and combined bending and shear. Currently, elastic buckling coefficients of web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that web panels are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the plate girder bridge, upper juncture between the flange and web can be assumed as fixed because concrete deck prevents the rotational displacement of upper flange. In the present study, a series of numerical analyses based on finite element modeling is carried out to investigate the effects of the concrete deck, and the resulting data are quantified in simple equations.

  • PDF

대형 Digital TV용 Display Unit의 강성 측정 (Elastic Modulus Measurement of a Large Size Digital TV Display Unit)

  • 김창희;문성인;최재붕;김영진;이정권;구자춘
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.115-122
    • /
    • 2005
  • As the digital TV markets rapidly growing, many manufacturers introduce large size flat screen TV units. There are two different display types available to large size models which are plasma and TFT-LCD. Since both are constructed with thin large panels that are mostly fragile to even moderate mechanical shock inputs. Some large size panels are severely resonated by the acoustic sound generated TV which deteriorates video quality. Recognizing the potential problems of large displays, accurate measurement of the panels is to be an essential task for the reliable design. Measurement of mechanical properties of a thin large crystallized panel such as TFT-LCD display with traditional material testing equipments is challenging. Since TFT-LCDs are constructed with combination of brittle glass panels, polymer sheets, and liquid crystal, their properties are not only anisotropic but also usually non-linear. Accurate measurement of the properties often requires very expensive facilities. Especially when the size of the test sample is as large as 40-inch or wider, direct measurement cost is prohibitive. Even worse, machining of the large TFT-LCD to make a smaller size specimen that could be fit into a material tester is not possible because of liquid crystal leakage. A new method fer the measurement of elastic modulus of large TFT-LCD panel is presented in this article. The suggested method provides a simple, economic, and user-friendly way fer measuring the elastic modulus of large panels with considerable level of accuracy.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • 제5권1호
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구 (A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels)

  • 이두성;이성철
    • 대한토목학회논문집
    • /
    • 제28권3A호
    • /
    • pp.367-373
    • /
    • 2008
  • 국내/외에서 설계되는 강곡선거더교 복부판의 전단강도는 복부판의 4변을 단순지지라는 가정 하에서 산정되는 탄성전단좌굴강도로 제안하고 있다(AASHTO Guide Specifications, 2003). 그러나, Lee et al.(1996, 1999)과 Bradford(1996)의 최근 연구에서 실제의 설계범위를 갖는 직선이나 곡선 복부판에서 어느 정도의 강성을 갖는 플랜지에 의해서 접하는 변의 경계조건은 단순지지 보다는 고정지지에 더 근접하며, 복부판의 형상비에 따라서는 AASHTO의 탄성좌굴강도가 60%이상 낮게 평가되고 있음을 발표하였다. 특히 강곡선복부판의 전단좌굴강도는 곡률의 영향으로 AASHTO Guide Specifications(2003)의 탄성전단좌굴강도보다 최대 38%이상 증가하고 있음이 Lee and Yoo(1999)의 연구에서 조사되었다. 본 논문에서는 선형좌굴해석을 이용하여 곡률과 경계조건이 동시에 고려된 강곡선 복부판의 전단좌굴계수를 합리적으로 추정할 수 있는 산정식을 제안하고자 한다.

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad;Arani, Ali Ghorbanpour;Arshid, Ehsan;Rahaghi, Mohsen Irani
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.557-572
    • /
    • 2021
  • The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.

복잡(複雜)한 형상(形狀)의 초기(初期)처짐을 가진 실선(實船)의 Panel의 압괴강도(壓壞强度) 간이추정법(簡易推定法) (Estimation of the Ultimate Compressive Strength of Actual Ship Panels with Complex Initial Deflection)

  • 백점기;김건
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.33-46
    • /
    • 1988
  • This paper describes a simplified method for estimation of the ultimate compressive strength of actual ship panels with initial deflection of complex shape. The proposed method consists of the elastic analysis using the large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection analysis, only one term of Fourier series for the plate deflection is considered. The results of the proposed method are in good agreement with those calculated by the elasto-plastic large deflection analysis using F.E.M. and the computing time of the proposed method is extremely short compared with that of F.E.M.

  • PDF

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.