DOI QR코드

DOI QR Code

Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation

  • Kargar, Javad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arshid, Ehsan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Rahaghi, Mohsen Irani (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2020.03.10
  • Accepted : 2021.04.06
  • Published : 2021.06.10

Abstract

The current study considers free vibration of the spherical panel with magnetorheological (MR) fluids core and magneto-electro-elastic face sheets. The panel is subjected to electro-magnetic loads and also is located on an orthotropic visco-Pasternak elastic foundation. To describe the displacement components of the structure, the first-order shear deformation theory (FSDT) is used and the motion equations are extracted by employing Hamilton's principle. To solve the motion differential equations, Navier's method is selected as an exact analytical solution for simply supported boundary conditions. Effect of the most important parameters such as magnetic field intensity, loss factor, multi-physical loads, types of an elastic medium, geometrical properties of the panel, and also different material types for the face sheets on the results is considered and discussed in details. The outcomes of the present work may be used to design more efficient smart structures such as sensors and actuators.

Keywords

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this study.

References

  1. Aguib, S., Nour, A., Benkoussas, B., Tawfiq, I., Djedid, T. and Chikh, N. (2016), "Numerical simulation of the nonlinear static behavior of composite sandwich beams with a magnetorheological elastomer core", Compos. Struct., 139, 111-119. https://doi.org/10.1016/j.compstruct.2015.11.075.
  2. Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y. and Lancon, P. (2014), "Dynamic behavior analysis of a magnetorheological elastomer sandwich plate", Int. J. Mech. Sci., 87, 118-136. https://doi.org/10.1016/J.IJMECSCI.2014.05.014.
  3. Amir, S., Arshid, E. and Ghorbanpour Arani, M.R. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads", Smart Struct. Syst., 23(5), 429-447. https://doi.org/https://doi.org/10.12989/sss.2019.23.5.429.
  4. Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Ghorbanpour Arani, A. (2020), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", JVC/J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203.
  5. Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.
  6. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
  7. Arshid, E., Amir, S. and Loghman, A. (2020a), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  8. Arshid, E., Amir, S. and Loghman, A. (2020b), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 109963622095502. https://doi.org/10.1177/1099636220955027.
  9. Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., 70(1), 97-112. http://dx.doi.org/10.12989/sem.2019.70.1.097.
  10. Babu, V.R. and Vasudevan, R. (2016), "Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates", Smart Mater. Struct., 25(3), 035006. https://doi.org/10.1088/0964-1726/25/3/035006.
  11. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  12. Chen, L. and Hansen, C. H. (2005), "Active vibration control of a magnetorheological sandwich beam", Proc. Acoustics, 93-98.
  13. Chikr, S.C., Kaci, A., Yeghnem, R. and Tounsi, A. (2019), "A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates", Struct. Eng. Mech., 72(5), 653-673. https://doi.org/10.12989/sem.2019.72.5.653.
  14. Crawley, E.F. and De Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10), 1373-1385. https://doi.org/10.2514/3.9792.
  15. Don, D.L. (1993), "An investigation of electrorheological material adaptive structures", Master's Thesis Lehigh University, Bethlehem, Pennsylvania.
  16. Ebrahimi, F., Barati, M.R. and Tornabene, F. (2019a), "Mechanics of nonlocal advanced magneto-electro-viscoelastic plates", Struct. Eng. Mech., 71(3), 257-269. https://doi.org/10.12989/sem.2019.71.3.257.
  17. Ebrahimi, F., Jafari, A. and Mahesh, V. (2019b), "Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates", Struct. Eng. Mech., 72(1), 113-129. https://doi.org/10.12989/sem.2019.72.1.113.
  18. Eshaghi, M., Sedaghati, R. and Rakheja, S. (2015), "The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: Experimental and finite element analysis", J. Intel. Mater. Syst. Struct., 26(14), 1920-1935. https://doi.org/10.1177/1045389X15586449.
  19. Farajpour, A., Yazdi, M.R.H., Rastgoo, A., Loghmani, M. and Mohammadi, M. (2016), "Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates", Compos. Struct., 140, 323-336. https://doi.org/10.1016/j.compstruct.2015.12.039.
  20. Farzaneh Joubaneh, E., Mojahedin, A., Khorshidvand, A.R. and Jabbari, M. (2015), "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load", J. Sandw. Struct. Mater., 17(1), 3-25. https://doi.org/10.1177/1099636214554172.
  21. Ghorbanpour Arani, A., BabaAkbar Zarei, H. and Haghparast, E. (2018a), "Vibration response of viscoelastic sandwich plate with magnetorheological fluid core and functionally graded-piezoelectric nanocomposite face sheets", J. Vib. Control, 24(21), 107754631774750. https://doi.org/10.1177/1077546317747501.
  22. Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2017), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field", J. Sandw. Struct. Mater., 1099636217743177. https://doi.org/10.1177/1099636217743177.
  23. Ghorbanpour Arani, A., Pourjamshidian, M. and Arefi, M. (2018b), "Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Syst., 22(1), 105. https://doi.org/10.12989/SSS.2018.22.1.105.
  24. Ghorbanpour Arani, A., Pourjamshidian, M., Arefi, M. and Arani, M.R.G. (2019), "Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress", Smart Struct. Syst., 23(2), 141. https://doi.org/10.12989/SSS.2019.23.2.141.
  25. Joshi, S.B. (2012), "Vibration study of magneto-rheological fluid filled sandwich beams", Int. J. Appl. Res. Mech. Eng., 2(2), 100-104.
  26. Kang, Y.K., Kim, J. and Choi, S.B. (2001), "Passive and active damping characteristics of smart electro-rheological composite beams", Smart Mater. Struct., 10(4), 724. https://doi.org/10.1088/0964-1726/10/4/316.
  27. Kargar, S. and Moosavi, A. (2019), "Bidirectional water transport through non-straight carbon nanotubes", J. Molecul. Liquid., 276, 39-46. https://doi.org/10.1016/j.molliq.2018.11.144.
  28. Lara-Prieto, V., Parkin, R., Jackson, M., Silberschmidt, V. and Kesy, Z. (2010), "Vibration characteristics of MR cantilever sandwich beams: experimental study", Smart Mater. Struct., 19(1), 015005. https://doi.org/10.1088/0964-1726/19/1/015005.
  29. Lee, S.J. and Reddy, J.N. (2004), "Vibration suppression of laminated shell structures investigated using higher order shear deformation theory", Smart Mater. Struct., 13(5), 1176. https://doi.org/10.1088/0964-1726/13/5/022.
  30. Malekzadeh Fard, K., Gholami, M., Reshadi, F. and livani, M. (2017), "Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer", J. Sandw. Struct. Mater., 19(4), 397-423. https://doi.org/10.1177/1099636215603034.
  31. Malekzadeh Fard, K., Payganeh, G. and Saghavaz, F.R. (2015), "Free vibration and low velocity impact analysis of sandwich plates with smart flexible cores", Modares Mech. Eng., 14(13), 191-200.
  32. Manoharan, R., Vasudevan, R. and Jeevanantham, A.K. (2014), "Dynamic characterization of a laminated composite magnetorheological fluid sandwich plate", Smart Mater. Struct., 23(2), 025022. https://doi.org/10.1088/0964-1726/23/2/025022.
  33. Manoharan, R., Vasudevan, R. and Sudhagar, P.E. (2016), "Semi-active vibration control of laminated composite sandwich platean experimental study", Arch. Mech. Eng., 63(3), 367-377. https://doi.org/10.1515/meceng-2016-0021.
  34. Maranganti, R., Sharma, N.D. and Sharma, P. (2006), "Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions", Phys. Rev. B-Condens. Matter. Mater. Phys., 74(1), 1-14. https://doi.org/10.1103/PhysRevB.74.014110.
  35. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
  36. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38. https://doi.org/10.1115/1.4010217
  37. Mohammadi, B., Rohanifar, M., Salimi-Majd, D. and Farrokhabadi, A. (2017), "Micromechanical prediction of damage due to transverse ply cracking under fatigue loading in composite laminates", J. Reinf. Plast. Compos., 36(5), 377-395. https://doi.org/10.1177/0731684416676635.
  38. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683. https://doi.org/10.12989/SEM.2019.70.6.683.
  39. Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 591-600. https://doi.org/10.12989/sem.2019.70.5.591.
  40. Naji, J., Zabihollah, A. and Behzad, M. (2018), "Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory", Mech. Adv. Mater. Struct., 25(3), 202-211. https://doi.org/10.1080/15376494.2016.1255819.
  41. Nguyen, D.D. (2018), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266.
  42. Oyadiji, S.O. (1996), "Applications of electro-rheological fluids for constrained layer damping treatment of structures", J. Intel. Mater. Syst. Struct., 7(5), 541-549. https://doi.org/10.1177/1045389X9600700513.
  43. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. https://doi.org/10.1115/1.1380385.
  44. Piefort, V. (2001), "Finite element modelling of piezoelectric active structures", Ph.D. Thesis. Bruxelles, Belgium: Universite Libre de Bruxelles.
  45. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  46. Ramamoorthy, M., Rajamohan, V. and Ak, J. (2016), "Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate", J. Vib. Control, 22(3), 869-895. https://doi.org/10.1177/1077546314532302.
  47. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic laminated plates", J. Sound Vib., 292(3-5), 626-644. https://doi.org/10.1016/j.jsv.2005.08.004.
  48. Reihani, A., Soleimani, A., Kargar, S., Sundararaghavan, V. and Ramazani, A. (2018), "Graphyne nanotubes: Materials with ultralow phonon mean free path and strong optical phonon scattering for thermoelectric applications", J. Phys. Chem. C, 122(39), 22688-22698. https://doi.org/10.1021/acs.jpcc.8b05898.
  49. Sahu, N.K., Biswal, D.K., Joseph, S.V. and Mohanty, S.C. (2020), "Vibration and damping analysis of doubly curved viscoelastic-FGM sandwich shell structures using FOSDT", Struct., 26, 24-38. https://doi.org/10.1016/j.istruc.2020.04.007.
  50. Sobhy, M. (2014), "Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium", Physica E: Low Dimens. Syst. Nanostruct., 56, 400-409. https://doi.org/10.1016/j.physe.2013.10.017.
  51. Stevens, N.G., Sproston, J.L. and Stanway, R. (1987), "On the mechanical properties of electro-rheological fluids", ASME/Applied Mechanics.
  52. Streett, A. (2006), "Preliminary finite element modeling of a piezoelectric actuated marine propulsion".
  53. Tabassian, R. and Rezaeepazhand, J. (2013), "Dynamic stability of smart sandwich beams with electro-rheological core resting on elastic foundation", J. Sandw. Struct. Mater., 15(1), 25-44. https://doi.org/10.1177/1099636212461494.
  54. Tzou, H.S., Lee, H.J. and Arnold, S.M. (2004), "Smart materials, precision sensors/actuators, smart structures, and structronic systems", Mech. Adv. Mater. Struct., 11(4-5), 367-393. https://doi.org/10.1080/15376490490451552.
  55. Ungar, E.E. and Kerwin Jr, E.M. (1962), "Loss factors of viscoelastic systems in terms of energy concepts", J. Acoust. Soc. Am., 34(7), 954-957. https://doi.org/10.1121/1.1918227.
  56. Vel, S.S., Mewer, R.C. and Batra, R.C. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", Int. J. Solid. Struct., 41(5-6), 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012.
  57. Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030.
  58. Yalcintas, M. and Coulter, J.P. (1995), "Analytical modeling of electrorheological material based adaptive beams", J. Intel. Mater. Syst. Struct., 6(4), 488-497. https://doi.org/10.1177/1045389X9500600406.
  59. Yeh, J.Y. (2014), "Vibration characteristics analysis of orthotropic rectangular sandwich plate with magnetorheological elastomer", Procedia Eng., 79, 378-385. https://doi.org/10.1016/J.PROENG.2014.06.358.
  60. Yeh, J.Y. and Chen, L.W. (2004), "Vibration of a sandwich plate with a constrained layer and electrorheological fluid core", Compos. Struct., 65(2), 251-258. https://doi.org/10.1016/j.compstruct.2003.11.004.