• Title/Summary/Keyword: Elastic fiber

Search Result 558, Processing Time 0.027 seconds

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet (강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가)

  • Lee, Jin Young;Shin, Hyen Oh;Min, Kyeng Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

A Study on the Reduction of Noise and Vibration in Ship Cabins by Using floating Floor (뜬바닥구조를 이용한 선박 격실의 소음.진동 저감에 관한 연구)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.949-957
    • /
    • 2006
  • In this Paper, reduction of noise and vibration in ship cabins by using floating floor is studied. Two theoretical models are presented and predicted insertion losses of floating floor are compared to experimental results, where measurements have been done in mock-up built for simulating typical ship cabin structures. In ships, mineral wool is usually used as the impact absorbing materials. The first model (M-S-Plate Model) is that upper plate and mineral wool are assumed as a one-dimensional mass-spring system, which is in turn attached to the simply supported elastic floor. The second model (Wave-Plate Model) is that mineral wool is assumed as an elastic medium for wave propagation. The comparisons show that M-S-Plate model is in good agreement with experimental results when density of mineral wool is 140K, and fiber direction is horizontal. For higher density and vertical fiber direction, Wave-Plate model shows good agreements with measurements. It is found that including the elastic behavior of the floor is essential in improving accuracy of the prediction for low frequency ranges below $100{sim}200Hz$.

Elastic Behavior Characteristics of GFRP Pipes Reinforced Ribs (리브로 보강된 GFRP 관로의 탄성 좌굴거동 특성)

  • Han, Taek Hee;Seo, Joo Hyung;Youm, Eung Jun;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.737-746
    • /
    • 2006
  • The elastic buckling strength of a Glass Fiber Reinforced Plastic (GFRP) pipe reinforced with ribs was evaluated. The height and thickness of a rib and the spacing between two adjacent ribs were considered as factors affecting the buckling strength of the pipe. And also, the ratio of the longitudinal stiffness and transverse stiffness was considered as the parameter affecting the buckling strength as the GFRP is orthotropic material. Buckling strengths of various GFRP pipe models with different shapes and stiffness ratios were evaluated by FE analyses and a formula to estimate the elastic buckling strength of a rib-reinforced pipe made of orthotropic material was suggested from the regression with the results from the FE analysis. Analytical results show that a rib-reinforced pipe has a buckling strength superior to a general flat pipe and the suggested formula estimates accurate buckling strength of the rib-reinforced pipe.

Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites (2-D Braided Textile 금속복합재료의 성형과 특성 해석)

  • 이상관;김효준;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

Mechanical Properties of Particle and Fiber Reinforced SMC Composites (입자와 섬유로 보강된 SMC 복합재의 기계적 특성에 관한 연구)

  • 정현조;윤성호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • An analytical model has been developed to predict the elastic properties of a filled resin reinforced by chopped fibers, a three-phase composite such as a filled sheet molding compound(SMC). In the model the matrix material and fillers form an effective matrix. The effective matrix is then considered to be reinforced with long fibers lying in the sheet plane but randomly oriented in the plane. Expressions for the resulting transversely isotropic composite properties are explicitly presented. Using this model, the Young's and shear moduli are calculated for the SMC sample with filler weight fraction of 35% and fiber content of 30%. The same properties are also determined experimentally. The agreement between the calculated and measured elastic moduli is found to be very good for the in-plane properties. However, the out-of-plane properties show a large difference because the effect of voids is not taken into account in the model.

  • PDF

Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers

  • Park, Jai-Woo;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.131-150
    • /
    • 2013
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section (SHS) strengthened with carbon fiber reinforced polymers (CFRP) sheets. 9 specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the CFRP sheet orientation. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 100 transversely. Also, stiffness and ductility index (DI) were compared between un-retrofitted specimens and retrofitted specimens. Finally, it was shown that the application of CFRP to slender sections delays local buckling and subsequently results in significant increases in elastic buckling stress. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.

Experimental Study on the Material Characteristics of Glass Fiber Composties (유리섬유복합재료의 재료특성에 관한 실험적 연구)

  • Park, Jong-Myen;Seo, Hyun-Su;Kwon, Min-Ho;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In the study, tensile, compression and in-plane tests about longitudinal direction of glass fiber were performed. Also, to obtain the material properties of GFRP fabric composite, tensile test was performed. All test were performed by the test method of ASTM. Maximum compressive strength was smaller than the maximum tensile strength at the longitudinal direction test results. Elastic modulus of the tensile and compressive was almost similar at the compression test results in the longitudinal direction. Based on the GFRP fabric composite test results, GF91 was showed good performance at maximum compressive, maximum strain and elastic modulus.

Innovative impact apparatus for fiber reinforced cement composites (섬유보강 시멘트 복합재료용 충격 시험장치)

  • Kim, Dong-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.403-404
    • /
    • 2010
  • This paper introduces new impact apparatus using elastic strain energy for Fiber Reinforced Cementitious Composites [HPFRCC] which requires larger size of specimen and higher impact load and energy to fail the specimens. New impact apparatus utilize elastic strain energy to generate high rate impact stress wave and it is much smaller, cheaper and safer than current other impact devices.

  • PDF

Actuating Characteristics of a Piezoceramic fiber Composite Actuator (압전섬유 복합재 엑츄에이터의 거동 특성)

  • Koo, Kun-Hyung;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.53-56
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material and actuator shape. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

  • PDF

Fiber-Optic Pressure Sensor Using a Rugate-Structured Porous Silicon Diaphragm Coated with PMMA (PMMA가 코팅된 주름 구조를 갖는 다공성규소 격판을 이용한 광섬유 압력센서)

  • Lee, Ki-Won;Cho, So-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • In this research, fiber-optic pressure sensors were fabricated with rugate-structured porous silicon (RPS) diaphragms coated with PMMA (Polymethyl-Methacrylate). The reflectance spectrum of the PMMA/RPS diaphragm was almost the same as that of uncoated RPS diaphragm. However the mechanical strength of the PMMA/RPS diaphragm increased more than that of the uncoated diaphragm. As a result, the fiber-optic sensor fabricated with PMMA/RPS diaphragm could successfully detect more high pressure difference without diaphragm damage than the highest detectable pressure difference of the sensor with normal RPS diaphragm. The response data of the fiber-optic sensor recorded as a function of pressure difference were fitted by theoretical curves. During this process, elastic moduli of the used PMMA/RPS diaphragms were obtained numerically. The dynamic response properties of the fiber-optic sensor were also investigated under continuous variation of the pressure difference conditions.