• Title/Summary/Keyword: Elastic deflection

Search Result 407, Processing Time 0.026 seconds

Load Carrying Capacity Assessment of Bridges with Elastic Supports Application (탄성지점의 적용에 따른 교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.595-603
    • /
    • 2012
  • This study applied elastic supports in order to evaluate load carrying capacity using measurement data obtained from load tests actively and utilizing various evaluation methods. In order to confirm the adequacy of structural analysis based on elastic supports and to improve the reliability of experiment results, we conducted a deflection test with flexural beams prepared as overhanging beams and, based on the results, performed precision safety diagnosis for real bridges under public service for improving the load carrying capacity evaluation method for bridges under public service. In the results of the bending test, compared to deflection calculated by the existing method, deflection obtained by applying elastic supports was closer to the actually measured deflection. In the results of evaluating load carrying capacity for a 3 span continuous steel box girder bridge just after its completion, load carrying capacity by elastic supports was smaller by up to 39% than that by the existing method. When the load carrying capacity of bridges is evaluated by the existing method the results vary among engineers due to lack of guidelines for evaluation such as the application of stress modification factor. This study was conducted as an effort to solve this problem through active research.

Deflection Characteristics of the Rice Stalk in Harvesting Operation by Combine for Multi-crops (보통형 콤바인의 수확작업에 관계하는 벼줄기의 굽힘특성)

  • 김영근;홍종태;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.485-490
    • /
    • 2003
  • Flexural rigidity(EI) and deflection characteristics of rice stalks were studied to investigate the mechanical interaction between a rice stalk and a combine reel in harvesting. Deflection of a rice stalk caused by reel operation is so large that conventional equation of small deflection fer elastic beam cannot be applied to the study of deflection characteristics. Therefore, an equation of large deflection for elastic beam was introduced in this study. Feasibility of this equation was examined by comparing theoretical calculation with the measured results for piano wire, and by the relationship between deflection and load acting on a rice stalk which was presumed by this equation. Results showed that the large deflection equation could predict the measurement data quite well. From this research, the following results were obtained. 1. Flexural rigidity(EI) calculated from the equation of large deflection was 4.0${\times}$l0$^4$N$.$$\textrm{mm}^2$(diameter 1.4mm, deflection 300mm) while the actual EI value of a piano wire(diameter 1.4mm) was 3.9${\times}$10$^4$N$.$$\textrm{mm}^2$. 2. The relationship between deflection and load acting on a rice stalk could be presumed by the large deflection equation. Flexural rigidity values of tested rice stalks calculated from the equation of large deflection were 1.6∼2.4${\times}$ l0$^4$N$.$$\textrm{mm}^2$(Hwa sung), 2.7∼3.5${\times}$ l0$^4$N$.$$\textrm{mm}^2$(Il pum) and 1.7∼2.4${\times}$ l0$^4$N$.$$\textrm{mm}^2$(Damakum)

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION I: POSITIVENESS AND CONTRACTIVENESS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.27-47
    • /
    • 2012
  • It has become apparent from the recent work by Choi et al. [3] on the nonlinear beam deflection problem, that analysis of the integral operator $\mathcal{K}$ arising from the beam deflection equation on linear elastic foundation is important. Motivated by this observation, we perform investigations on the eigenstructure of the linear integral operator $\mathcal{K}_l$ which is a restriction of $\mathcal{K}$ on the finite interval [$-l,l$]. We derive a linear fourth-order boundary value problem which is a necessary and sufficient condition for being an eigenfunction of $\mathcal{K}_l$. Using this equivalent condition, we show that all the nontrivial eigenvalues of $\mathcal{K}l$ are in the interval (0, 1/$k$), where $k$ is the spring constant of the given elastic foundation. This implies that, as a linear operator from $L^2[-l,l]$ to $L^2[-l,l]$, $\mathcal{K}_l$ is positive and contractive in dimension-free context.

Model on the Elastic Deflection of Temple of the Spectacle Frame (안경테 다리의 탄성변형에 관한 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Differential equations and their solutions were formulated to describe the deflection of the tapered, nonuniform thickness and width's temple, clamped at one end while the perpendicular force is acting on the other end which is freely suspended. The model was derived based on laws of continuity at every point inside the elastic medium that the deflection, tangent slope, bending moment, shearing force must be continuous within the medium. The model is found to be in good agreement with measurements on the beta titanium temple with the correlation 0.992 and p=0.999(Chi test). Therefore it is possible to predict the effect of various temple parameters such as elastic modulus, thickness, width on the deflection of the temples being considered.

  • PDF

Computation of Inelastic Deflection of Slab by Elastic Finite Element Analysis (탄성 유한요소 해석에 의한 슬래브의 비탄성 처짐 산정)

  • 이성우
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.83-89
    • /
    • 1992
  • A practical method of estimating inelastic deflection of reinforced concrete slab under service load is presented. Based on the elastic results of linear finite element analysis and area of reinforcement, inelastic deflection multiplier(.betha.) is evaluated and desired deflection as a measure of serviceability of the designed slab is obtained. Example for the corner supported slab shows that the results from the proposed method agree well with those from the experiment/and nonlinear finite element analysis. Application of the method to the design of irregular slab is also considered.

  • PDF

Evaluation of the Deflection of Reinforced Concrete Half Slabs with Ribs (철근콘크리트 리브형 하프슬래브의 처짐 평가법)

  • Park, Jong-Wook;Kim, Min-Ok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.37-38
    • /
    • 2010
  • The deflection of RC half slabs with rids was much smaller than that of the conventional RC half slabs. In this study, the deflection of RC half slabs with rids was calculated by using a FE method and a elastic analysis. The deflections predicted by the FE method and the elastic analysis predicted the deflection measured by tested slabs with reasonable agreement.

  • PDF

Large Deflection Analysis of a Plane Frame with Local Bending Collapse (국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석)

  • 김천욱;원종진;강명훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

New Engineering Methods for Non-Linear Deflection Estimation of Cylinder under Bending (굽힘 모멘트가 작용하는 실린더의 비선형 처짐량 예측을 위한 새로운 공학적 계산식)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin;Jung, Hyun-Kyu;Lee, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.311-317
    • /
    • 2004
  • This paper proposes engineering estimation equations for the maximum deflection of a cylinder subject to bending under elastic-plastic and elastic-creep conditions. Being based on the reference stress approach, the proposed equations are simple to use and can accommodate general tensile and creep behaviours. Validation against detailed 3-D FE results using actual stress-strain data and realistic creep-deformation data shows excellent agreement, which provides confidence in the use of the proposed equation. Based on the proposed equations, together with information on in-service inspection data, discussion is given how to estimate future time-dependent and time-independent deflection of the CANDU pressure tube. Thus the present result would be valuable information for integrity assessment of the CANDU pressure tube.

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF

A numerical analysis of the large deflection of an elastoplastic cantilever

  • Wang, B.;Lu, G.;Yu, T.X.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.163-172
    • /
    • 1995
  • A simple numerical method is applied to calculate the large deflection of a cantilever beam under an elastic-plastic deformation by dividing the deformed axis into a number of small segments. Assuming that each segment can be approximated as a circular arc, the method allows large deflections and plastic deformation to be analyzed. The main interests are the load-deflection relationship, curvature distribution along the beam and the length of the plastic region. The method is proved to be easy and particularly versatile. Comparisons with other studies are given.