• Title/Summary/Keyword: Elastic body material

Search Result 123, Processing Time 0.022 seconds

A Numerical Approach to Effective Elastic Moduli of Solids with Microinclusions and Microvoids (미소 개재물과 기공을 갖는 고체의 유효탄성계수에 대한 수치적 접근)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • For the analysis of solids containing a number of microinclusions or microvoids, in which the mechanical effect of each inclusion or void, a numerical approach is need to be developed to understand the mechanical behavior of damaged solids containing these defects. In this study, the simulation method using the natural element method is proposed for the analysis of effective elastic moduli. The mechanical effect of each inclusion or void is considered by controlling the material constants for Gaussian points. The relationship between area fraction of microinclusions or microvoids and effective elastic moduli is studied to verify the validity of the proposed method. The obtained results are in good agreement with the theoretical results such as differential method, self-consistent method, Mori-Tanaka method, as well as the numerical results by rigid body spring model.

Clinical Safety Evaluation of Interbody Fusion Cage Based on Tunable Elastic Modulus of the Cellular Structure According to the Geometrical Variables (형상학적 변수에 따른 다공성 구조의 가변탄성계수를 기반으로 한 추간체유합보형재의 임상적 안전성 평가)

  • Kim, SeongJin;Lee, YongKyung;Choi, Jaehyuck;Hong, YoungKi;Kim, JungSung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • The interbody fusion cage used to replace the degenerative intervertebral disc is largely composed of titanium-based biomaterials and biopolymer materials such as PEEK. Titanium is characterized by osseointergration and biocompatibility, but it is posed that the phenomenon such as subsidence can occur due to high elastic modulus versus bone. On the other hand, PEEK can control the elastic modulus in a similar to bone, but there is a problem that the osseointegration is limited. The purpose of this study was to implement titanium material's stiffness similar to that of bone by applying cellular structure, which is able to change the stiffness. For this purpose, the cellular structure A (BD, Body Diagonal Shape) and structure B (QP, Quadral Pod Shape) with porosity of 50%, 60%, 70% were proposed and the reinforcement structure was suggested for efficient strength reinforcement and the stiffness of each model was evaluated. As a result, the stiffness was reduced by 69~93% compared with Ti6Al4V ELI material, and the stiffness most similar to cortical bone is calculated with the deviation of about 12% in the BD model with 60% porosity. In this study, the interbody fusion cage made of Ti6Al4V ELI material with stiffness similar to cortical bone was implementing by applying cellular structure. Through this, it is considered that the limitation of the metal biomaterial by the high elastic modulus may be alleviated.

Displacement Characteristics of the Square-frame Ultrasonic Motor (정사각틀 초음파 모터의 변위 특성)

  • Kim, Jong-Wook;Park, Choong-Hyo;Lim, Jung-Hoon;Jeong, Seong-Su;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.733-738
    • /
    • 2011
  • A novel design of a simple square-frame USM (ultrasonic motor) was proposed. The stator of the motor consists of a square-frame shape elastic body and four rectangular plate ceramics. The four ceramics were attached to inner surfaces of the square frame elastic body. The same phase voltages were applied to the ceramics on horizontal surfaces, and 90 degree phase difference voltage were applied to the ceramics on vertical surfaces. To find a model that generates elliptical motion at outside of the stator, the finite element analysis program ATILA was used. The analyzed results were compared to the experimental results. As result, the model EL10EH3ET0.5CL4 which generates the maximum elliptical displacement was chosen by analyzing the resonance mode according to changes in frequency.

The Electro-Mechanical Properties of Disk-Type Stator for Ultrasonic Motor (초음파 모터용 디스크형 고정자의 전기기계적 특성)

  • Lee, J.S.;Kim, B.W.;Lee, S.H.;Shin, S.I.;Nam, K.D.;Oh, H.K.;Jang, Y.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.339-340
    • /
    • 2006
  • In this paper, disk-type ultrasonic motor using radial and bending vibration modes is newly designed and fabricated to measure its characteristics. As the diameter of elastic body increases, the resonant frequency decreases and its resonant frequency is about 92kHz when the physical dimensions of piezoelectric ceramic and elastic body are 28mm of diameter and 2mm of thickness, and 32mm of diameter and 2mm of thickness, respectively. When the applied voltage is 20Vpp. its speed and torque are 200rpm and 1N, respectively.

  • PDF

Design and Fabrication of a Thin-Type Ultrasonic Motor (Thin-Type 초음파모터의 설계 및 제작)

  • Kim, Jong-Wook;Park, Choong-Hyo;Chong, Hyon-Ho;Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.525-529
    • /
    • 2010
  • In this paper, the characteristics of a thin-type ultrasonic motor generating elliptical displacements analyzed by FEM are presented, and then fabrication of the motor is then described. The structure of the motor consists of sixteen ceramic pieces attached to the upper and bottom surfaces of an elastic body. The principle of the motor is to apply alternating voltages which have a 90 phase difference to the attached ceramics, and then elliptical displacements are generated at four edges of the elastic body. Then the rotor is moved by the elliptical displacements. In the case of a ceramic thickness of 1.5, the highest speed was obtained at 79 kHz. In the case of a ceramic thickness of 2 mm, the highest speed was obtained at 77.5 kHz. Consequently, the speed and torque of the ultrasonic motor (USM) increased linearly with increasing applied voltage.

Analysis of Elastic Constants of an Anisotropic Rock (이방성 암석의 탄성상수 분석연구)

  • 박철환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2001
  • The total number of elastic constants of an anisotropic body is 9 and thus it is very difficult to measure these constants experimentally. The number of elastic constants can be reduced if a rock or rock mass is regarded as isotropic or transversely isotropic material. Since only 4 stress-strain relationships can be obtained, it is theoretically impossible to determine all 5 constants from a single uniaxial compression teat. Lekhnitskii overcame this problem by suggesting the fifth equation based on laboratory tests. But his equation is theoretically wrong and does not agree with experimental results. This paper describes the stress-strain relationships and the independent/dependent elastic constants of an anisotropic mass and suggests a testing mothed to determine 5 independent elastic constants for a transversely isotropic rock.

  • PDF

Analysis of the fracture of brittle elastic materials using a continuum damage model

  • Costa Mattos, Heraldo S.;Sampaio, Rubens
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.411-427
    • /
    • 1995
  • The most known continuum damage theories for brittle structures are suitable to model the degradation of the material due to the deformation process and the consequent initiation of a macro-crack. Nevertheless, they are not able to describe the propagation of the crack that leads, eventually, to the breakage of the structure into parts that undergo rigid body motion. This paper presents a theory, formulated from formal arguments of Continuum Mechanics, that may describe not only the degradation but also the fracture of elastic structures. The modeling of such a discontinuous phenomenon through a continuous theory is possible by taking a cohesion variable, related with the links between material points, as an additional degree of kinematical freedom. The possibilities of the proposed theory are discussed through examples.

Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

  • Sasaki, Hirotoshi;Ochiai, Naoya;Iga, Yuka
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis (분기좌굴이론의 탄소성 유한요소법에의 적용)

  • 김종봉;양동열;윤정환
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state

  • Chen, Li;Pan, Darong;Zhao, Qilin;Chen, Li;Chen, Liang;Xu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.137-149
    • /
    • 2021
  • In engineering design, the axial equivalent elastic modulus of laminated FRP pipe was mostly calculated by the average elastic modulus method or the classical laminated plate theory method, which are based on relatively simplified assumptions, and may be not accurate enough sometimes. A new analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipe was established based on three-dimensional stress state. By comparing the results calculated by this method with those by the above two traditional analytical methods and the finite element method, it is found that this method for the axial equivalent elastic modulus fits well not only for thin-walled pipes with orthotropic layers, but also for thick-walled pipes with arbitrary layers. Besides, the influence of the layer stacking on the axial equivalent elastic modulus was studied with this method. It is found that a proper content of circumferential layer is beneficial for improving the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers, and then can reduce its material quantity under the premise that its axial stiffness remains unchanged. Finally, the meso-mechanical mechanism of this effect was analyzed. The improving effect of circumferential layer on the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers is mainly because that, the circumferential fibers can restrain the rigid body rotations of the oblique fibers, which tend to cause the significant deformations of the pipe wall units and the relatively low axial equivalent elastic modulus of the pipe.