• Title/Summary/Keyword: Elastic Spring

Search Result 397, Processing Time 0.022 seconds

An Efficient Model for Dynamic Analysis of Caisson Breakwaters under Impulsive Wave Loadings (충격파력을 받는 케이슨 방파제의 동적 해석 모델)

  • 박우선;안희도
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.108-115
    • /
    • 1995
  • An efficient model for the dynamic analysis of caisson breakwaters under impulsive wave loadings is presented. The caisson structure is. regarded as a rigid body, and the rubble mound foundation is idealized as virtual added masses, springs, and dampers using the elastic half-space theory. The frequency-dependent hydrodynamic added mass and damping coefficients are considered by using the time memory functions and added mass at infinite frequency. To simulate the permanent sliding phenomenon of the caisson, the horizontal spring is modeled as a nonlinear spring with plastic behaviors. Comparisons with experimental results show that the present model gives fairly good results. Sensitivity analysis is performed for the relevant parameters affecting the dynamic responses of a caisson breakwater. Numerical experiments are also carried out to investigate the applicability to the prediction of permanent sliding distance and critical weight of the caisson.

  • PDF

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.

Non-linear analysis of pile groups subjected to lateral loads using 'p-y' curve

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.57-73
    • /
    • 2012
  • The paper presents the analysis of two groups of piles subjected to lateral loads incorporating the non-linear behaviour of soil. The finite element method is adopted for carrying out the parametric study of the pile groups. The pile is idealized as a one dimensional beam element, the pile cap as two dimensional plate elements and the soil as non-linear elastic springs using the p-y curves developed by Georgiadis et al. (1992). Two groups of piles, embedded in a cohesive soil, involving two and three piles in series and parallel arrangement thereof are considered. The response of the pile groups is found to be significantly affected by the parameters such as the spacing between the piles, the number of piles in a group and the orientation of the lateral load. The non-linear response of the system is, further, compared with the one by Chore et al. (2012) obtained by the analysis of a system to the present one, except that the soil is assumed to be linear elastic. From the comparison, it is observed that the non-linearity of soil is found to increase the top displacement of the pile group in the range of 66.4%-145.6%, while decreasing the fixed moments in the range of 2% to 20% and the positive moments in the range of 54% to 57%.

Buckling Behavior of Corrugated Steel Pipe under External Uniform Pressure (등분포하중을 받는 파형강관의 좌굴거동)

  • Ahn, Woo Cheul;Han, Taek Hee;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • There are two basic concepts about concerning the buckling analysis of a buried pipe. One concept considers the soil around the pipe asn elastic continuum mediaum. The other concept holds that the pipe is sup ported by an elastic spring, which replaces the effects of the surrounding soil (the Winkler model). Theise buckling analysis is based on plane analysis, without considering the corrugation effect and the length effect. This paper thus presents a parametric study using the Finite Element Method (FEM) for the Winker model and proposes a buckling strength formula after examining a 3D analysis considering the corrugation effect and the length effect, thatwhichhelp in estimating the critical buckling strength of such CSP

Effects of Mount Eccentricity and External Force Eccentricity on the Vibration Characteristics of Naval Shipboard Equipments Supported by Elastic Mounts (마운트편심과 기진력편심이 함정탑재장비의 진동특성에 미치는 영향)

  • Lee, Hyun Yup;Lee, Chung Hyun;Ruy, Wonsun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • A rigid body supported by 4 linear springs has been analyzed, to investigate the effects of eccentricities on the vibration responses for naval shipboard equipments supported by elastic mounts. Considering mount eccentricity (the location of the center of spring reaction forces relative to the mass center) and excitation force eccentricity (the location of the center of the excitation force relative to the mass center), the vibration phenomena have been formulated and discussed. Also, the effects of the eccentricities have been evaluated and discussed for the elastically mounted naval shipboard equipment. Results show that the mount eccentricity has little effects on the structure-borne noise above the natural frequency of the system, however the excitation force eccentricity has significant effects all over the frequency range.

Prediction of Residual Deformation and Stress Distribution for a Thermo-Elastic-Plastic Beam Using a Simplified Numerical Analysis (간이 수치해석에 의한 열탄소성보의 잔류변형 및 응력분포의 예측)

  • S.H. Jun;K. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.22-34
    • /
    • 1996
  • Regarding the plate bending process by line heating method, in this study a simplified numerical analysis is performed for a beam model to predict its residual deformation and stress distribution. Using the modified strip theory and beam finite element method, a PC-based simulation program is developed for a thermo-elastic-plastic beam. The plate bending problem can be approximately replaced by a beam model using distributed springs to account for the effect of adjacent strips. The spring constants are chosen as the best fit with experiments. In this paper, it is assumed that the temperature distribution is already given and the temperature-dependent material properties are considered. To verify the simulation program, the results using present numerical algorithm are compared with other published experimental results and similar numerical studies. The comparison shows good agreement. The present PC-based computer program also shows good efficiency in computing time.

  • PDF

A Program for Distortional Analysis of Steel Box Girder Bridges (강상자형교의 뒤틀림 해석을 위한 프로그램 개발)

  • Lee, Hee Up;Yang, Chang Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.13-22
    • /
    • 1999
  • The objective of this paper is to develop a program for distortional analysis of steel box girder bridges. This program is formulated by using MSDM(modified slope deflection method). Two examples are carried out to verify the validity of the developed technique and its computation procedures. The analyzed results are compared with the previously proposed methods, BEF(beam on elastic foundation) and EBEF(equivalent beam on elastic foundation). The BEF method is limited only to prismatic straight box girders. In the EBEF method, stiffness of the intermediate diaphragms is infinitely considered. On the other hand, stiffness of the intermediate diaphragms is idealized as spring contant in this study. And then, nonprismatic straight box girders can be analyzed using the same procedure. Therefore, the comparison shows that the MSDM algorithm proposed in this paper is more efficient and reliable. Also parametric studies are perfomed using the proposed algorithm.

  • PDF

Analysis of Contact Resonance Frequency Characteristics for Cantilever of Ultrasonic-AFM Using Finite Element Method (유한요소 해석을 이용한 초음파원자현미경 캔틸레버의 접촉 공진주파수 특성 분석)

  • Lee, Joo Min;Han, You Ha;Kwak, Dong Ryul;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.478-484
    • /
    • 2014
  • Ultrasonic atomic force microscopy(Ultrasonic-AFM) can be used to obtain images of the elastic properties of a subsurface and to evaluate the elastic properties by measuring the contact resonance frequency. When a tip is in contact with the sample, it is necessary to understand the cantilever behavior and the tip-sample interaction for the quantitative and reliable analysis. Therefore, precise analysis models that can accurately simulate the tip-sample contact are required; these can serve as good references for predicting the contact resonance frequency. In this study, modal analyses of the first four modes were performed to calculate the contact resonance frequency by using a spring model, and the deformed shapes of the cantilever were visualized at each mode. We presented the contact characteristics of the cantilever with a variety of contact conditions by applying the contact area, contact material thickness, and material properties as the parameters for the FEM analysis.

Study on Behavior Characteristics of a Pile-Type Vessel Collision Protective Structure (파일형 선박 충돌방호공의 거동특성 연구)

  • Lee, Gye-Hee;Lee, Jeong-Woo
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.75-85
    • /
    • 2011
  • In this study, the behavior were analyzed for the bow collision event. The model of protective Structure was consist of slab, RCP and non-linear soil spring. The ship was modeled by bow and midship. The bow model was composed by elastic-plastic shell elements, and the midship was composed by elastic solid element. According to the weight of the ship's change from DWT 10000 until DWT 25000 increments 5000. The head-on collision was assumed, its speed was 5knot. Analysis was carried out ABAQUS/Explicit. As the result, increasing the weight of the ship deformability in athletes and to increase the amount of energy dissipated by the plastic could be confirmed.

Vibro-Contact Analysis of Ultrasonic Atomic Force Microscopy Tip and It's Application to Nano Surface (UAFM(초음파원자현미경) 팁의 진동-접촉 해석과 나노 표면에의 응용)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.132-138
    • /
    • 2010
  • Vibro-contact of cantilever tip is studied with respect to contact mechanics and an elastic characteristic of nanoscale surface is imaged. The contact resonance frequency is calculated theoretically using the spring-mass and Herzian models, and the variation of resonance frequency of cantilever was analyzed when the cantilever was free and contact. The elasticity imaging was also achieved successfully using phase and amplitude signals obtained from the spheroidized steel specimens by prototype ultrasonic AFM.