• Title/Summary/Keyword: Elastic Porous Materials

Search Result 78, Processing Time 0.034 seconds

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Study on the Adaptability of Hyperbolic Constitutive Model for Rubble Stone (사석지반에 대한 쌍곡선 구성모델의 적용성 연구)

  • Hwang, Se-Hwan;Kim, Jong-Soo;Kwon, Oh-Kyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.53-63
    • /
    • 2002
  • Until recently the other attempts except linear elastic analysis using assumed elastic modulus had not been made in order to evaluate the settlement of the rock fill materials in Korea. Especially, it was almost impossible to predict the precise settlement of the breakwater structure made with dumped rubble stone. In this study, 3 sets of large scaled triaxial compression tests for porous basaltic quarry rocks were carried out and numerical simulation of those triaxial compression tests were performed applying non linear elastic model. Two stress-strain behaviors were compared to study the adaptability of hyperbolic constitutive model for the rubble stone. The results showed quite good agreements between the two stress-strain behaviors. Thus, the hyperbolic constitutive model is thought to be alternative approach evaluate the settlements of the loose rock-fill material.

  • PDF

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials (흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구)

  • Dongheon Kang;Haesang Yang;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.261-269
    • /
    • 2024
  • In this paper, the acoustic performance of an absorptive silencer was enhanced by optimizing an arrangement of multi-layered absorbing materials. The acoustic performance of the silencer was evaluated through transmission loss, and finite element method-based numerical analysis program was employed to calculate the transmission loss. Polyurethane, a porous elastic material frequently used in absorptive silencers, was employed as the absorbing material. The Biot-Allard model was applied, assuming that air is filled inside the polyurethane. By setting the frequency range of interest up to the 2 kHz and the acoustic performance affecting properties of the absorbing materials were investigated when it was composed as a single layer. And the acoustic performance of the silencers with the single and multi-layered absorbing materials was compared with each other based on polyurethane material properties. Subsequently, the arrangement of the absorbing materials was optimized by applying the Nelder-Mead method. The results demonstrated that the average transmission loss improved compared to the single-layered absorptive silencer.

Effect of ethyl alcohol aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH

  • Ho, Wen-Fu;Tsou, Hsi-Kai;Wu, Shih-Ching;Hsu, Shih-Kuang;Chuang, Shao-Hsuan;Hsu, Hsueh-Chuan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.51-62
    • /
    • 2014
  • The purpose of this experiment was to evaluate the apatite-formation abilities of low-modulus Ti-7.5Mo substrates treated with NaOH aqueous solutions and subsequent ethyl alcohol aging before soaking them in simulated body fluid. Specimens of Ti-7.5Mo were initially treated with 5 M NaOH at $60^{\circ}C$ for 24 h, resulting in the formation of a porous network structure composed of sodium hydrogen titanate. Afterwards, the specimens were aged in ethyl alcohol at $60^{\circ}C$ for 5 or 10 min, and subsequently immersed in simulated body fluid at $37^{\circ}C$ for 3, 7 and 14 days. Ethyl alcohol aging significantly increased the apatite-forming abilities of Ti-7.5Mo. The amount of apatite deposited on the Ti-7.5Mo after NaOH treatment and subsequent ethyl alcohol aging was much greater, especially after the Ti-7.5Mo specimens were aged for 5 min. Due to its excellent combination of bioactivity, low elastic modulus and low processing costs, the Ti-7.5Mo treated with NaOH aqueous solutions and subsequently aged in ethyl alcohol has promising heavy load-bearing applications.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.