DOI QR코드

DOI QR Code

Effect of ethyl alcohol aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH

  • Ho, Wen-Fu (Department of Materials Science and Engineering, Da-Yeh University) ;
  • Tsou, Hsi-Kai (Department of Neurosurgery, Taichung Veterans General Hospital) ;
  • Wu, Shih-Ching (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ;
  • Hsu, Shih-Kuang (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ;
  • Chuang, Shao-Hsuan (Department of Materials Science and Engineering, Da-Yeh University) ;
  • Hsu, Hsueh-Chuan (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology)
  • Received : 2014.02.19
  • Accepted : 2014.03.18
  • Published : 2014.03.25

Abstract

The purpose of this experiment was to evaluate the apatite-formation abilities of low-modulus Ti-7.5Mo substrates treated with NaOH aqueous solutions and subsequent ethyl alcohol aging before soaking them in simulated body fluid. Specimens of Ti-7.5Mo were initially treated with 5 M NaOH at $60^{\circ}C$ for 24 h, resulting in the formation of a porous network structure composed of sodium hydrogen titanate. Afterwards, the specimens were aged in ethyl alcohol at $60^{\circ}C$ for 5 or 10 min, and subsequently immersed in simulated body fluid at $37^{\circ}C$ for 3, 7 and 14 days. Ethyl alcohol aging significantly increased the apatite-forming abilities of Ti-7.5Mo. The amount of apatite deposited on the Ti-7.5Mo after NaOH treatment and subsequent ethyl alcohol aging was much greater, especially after the Ti-7.5Mo specimens were aged for 5 min. Due to its excellent combination of bioactivity, low elastic modulus and low processing costs, the Ti-7.5Mo treated with NaOH aqueous solutions and subsequently aged in ethyl alcohol has promising heavy load-bearing applications.

Keywords

References

  1. Ahmed, T., Long, M., Silvestri, J., Ruiz, C. and Rack, H.J. (1995), "A new low modulus, biocompatible titanium alloy", Titanium 95: Sci. Technol., 2, 1760-1767.
  2. Albayrak, O., El-Atwani, O. and Altintas, S. (2008), "Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition", Surf. Coat. Technol., 202(11), 2482-2487. https://doi.org/10.1016/j.surfcoat.2007.09.031
  3. Barrere, F., Van der Valk, C.M., Meijer, G., Dalmeijer, R.A.J., De Groot, K. and Layrolle, P. (2003), "Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats", J. Biomed. Mater. Res. B. Appl. Biomater., 67(1), 655-665.
  4. Boyd, A.R., Duffy, H. and McCann, R. (2008), "Sputter deposition of calcium phosphate/titanium dioxide hybrid thin films", Mater. Sci. Eng. C, 28(2), 228-236. https://doi.org/10.1016/j.msec.2006.12.004
  5. Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A. and Steinemann, S.G. (2004), "Enhanced bone apposition to a chemically modified SLA titanium surface", J. Dent. Res., 83(7), 529-533. https://doi.org/10.1177/154405910408300704
  6. Chen, Y., Zheng, X., Ji, H. and Ding, C. (2007), "Effect of Ti-OH formation on bioactivity of vacuum plasma sprayed titanium coating after chemical treatment", Surf. Coat. Technol., 202(3), 494-498. https://doi.org/10.1016/j.surfcoat.2007.06.015
  7. Choee, J.H., Lee, S.J., Lee, Y.M., Rhee, J.M., Lee, H.B. and Khang, G. (2004), "Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient", J. Appl. Polym. Sci., 92(1), 599-606. https://doi.org/10.1002/app.20048
  8. De Groot, K., Geesink, R. and Klein, C.P.A.T. (1987), "Serekian P. Plasma sprayed coatings of hydroxylapatite", J. Biomed. Mater. Res., 21(12), 1375-1381. https://doi.org/10.1002/jbm.820211203
  9. Ducheyne, P., Radin, S., Heughebaert, M. and Heughebaert, J.C. (1990), "Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution", Biomater., 11(4), 244-254. https://doi.org/10.1016/0142-9612(90)90005-B
  10. Faucheux, N., Schweiss, R., Lutzow, K., Werner, C. and Groth, T. (2004), "Selfassembled monolayers with different terminating groups as model substrates for cell adhesion studies", Biomater., 25(14), 2721-2730. https://doi.org/10.1016/j.biomaterials.2003.09.069
  11. Faure, J., Balamurugan, A., Benhayoune, H., Torres, P., Balossier, G. and Ferreira, J.M.F. (2009), "Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy", Mater. Sci. Eng., C, 29(4), 1252-1257. https://doi.org/10.1016/j.msec.2008.09.047
  12. Geesink, R.G. and Hoefnagels, N.H. (1995), "Six-year results of hydroxyapatite-coated total hip replacement", J. Bone Joint Surg. Br., 77b(4), 534-547.
  13. Hench, L.L. (1991), "Bioceramics: From concept to clinic", J. Am. Ceram. Soc., 74(7), 1487-1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  14. Ho, W.F. (2008a), "A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys", J. Alloys Compd., 464(1-2), 580-583. https://doi.org/10.1016/j.jallcom.2007.10.054
  15. Ho, W.F. (2008b), "Effect of omega phase on mechanical properties of Ti-Mo alloys for biomedical application", J. Med. Bio. Eng., 28(1), 47-51.
  16. Ho, W.F., Ju, C.P. and Chern Lin, J.H. (1999), "Structure and properties of cast binary Ti-Mo alloys", Biomater., 20(22), 2115-2122. https://doi.org/10.1016/S0142-9612(99)00114-3
  17. Ho, W.F., Lai, C.H., Hsu, H.C. and Wu, S.C. (2010), "Surface modification of a Ti-7.5Mo alloy using NaOH treatment and $Bioglass^{(R)}$ coating", J. Mater. Sci. Mater. Med., 21(5), 1479-1488. https://doi.org/10.1007/s10856-010-3990-z
  18. Hsu, H.C., Tsou, H.K., Hsu, S.K., Wu, S.C., Lai, C.H. and Ho, W.F. (2011), "Effect of water aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH", J. Mater. Sci., 46(5), 1369-1379. https://doi.org/10.1007/s10853-010-4929-y
  19. Hsu, H.C., Wu, S.C., Fu, C.L. and Ho, W.F. (2010), "Formation of calcium phosphates on low-modulus Ti-7.5Mo alloy by acid and alkali treatments", J. Mater. Sci., 45(13), 3661-3670. https://doi.org/10.1007/s10853-010-4411-x
  20. Im, K.H., Lee, S.B., Kim, K.M. and Lee, Y.K. (2007), "Improvement of bonding strength to titanium surface by sol-gel derived hybrid coating of hydroxyapatite and titania by sol-gel process", Surf. Coat. Technol., 202(4-7), 1135-1138. https://doi.org/10.1016/j.surfcoat.2007.07.081
  21. Kawai, T., Kizuki, T., Takadama, H., Matsushita, T., Unuma, H., Nakamura, T. and Kokubo, T. (2010), "Apatite formation on surface titanate layer with different Na content on Ti metal", J. Ceram. Soc. Jpn., 118(1373), 19-24. https://doi.org/10.2109/jcersj2.118.19
  22. Kim, H.M., Miyaji, F., Kokubo, T. and Nakamura, T. (1996), "Preparation of bioactive Ti and its alloys via simple chemical surface treatment", J. Biomed. Mater. Res., 32(3), 409-417. https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
  23. Klein, C.P.A.T., Patka, P., Van der Lubbe, H.B.M., Wolke, J.G.C. and De Groot, K. (1991), "Plasma-sprayed coatings of tetracalciumphosphate, hydroxyl-apatite, and $\alpha$-TCP on titanium alloy: an interface study", J. Biomed. Mater . Res., 25(1), 53-65. https://doi.org/10.1002/jbm.820250105
  24. Kokubo, T. (1996), "Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process", Thermochim. Acta., 280-281, 479-490. https://doi.org/10.1016/0040-6031(95)02784-X
  25. Kokubo, T. and Kim, H.M. (2003), "Kawashita M. Novel bioactive materials with different mechanical properties", Biomater., 24(13), 2161-2175. https://doi.org/10.1016/S0142-9612(03)00044-9
  26. Kokubo, T. and Takadama, H. (2006), "How useful is SBF in predicting in vivo bone bioactivity", Biomater., 27(15), 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  27. Kokubo, T., Miyaji, F., Kim, H.M. and Nakamura, T. (1996), "Spontaneous formation of bone-like apatite layer on chemically treated titanium metals", J. Am. Ceram. Soc., 79(4), 1127-1129. https://doi.org/10.1111/j.1151-2916.1996.tb08561.x
  28. Kosmulski, M. (1993), "The role of the activity coefficients of surface groups in the formation of surface charge of oxides. Part II: Ion exchange and $\Im$ potentials", Colloid Polym. Sci., 271(11), 1076-1082. https://doi.org/10.1007/BF00659297
  29. Lautenschlager, E.P. and Monaghan, P. (1993), "Titanium and titanium alloys as dental materials", Int. Dent. J., 43(3), 245-253.
  30. Lin, D.J., Chuang, C.C., Chern Lin, J.H., Lee, J.W., Ju, C.P. and Yin, H.S. (2007), "Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur", Biomater., 28(16), 2582-2589. https://doi.org/10.1016/j.biomaterials.2007.02.005
  31. Liu, X.Y., Chu, P.K. and Ding, C.X. (2004), "Surface modification of titanium, titanium alloys, and related materials for biomedical applications", Mater. Sci. & Eng. R., 47(3-4), 49-121. https://doi.org/10.1016/j.mser.2004.11.001
  32. Lu, X., Leng, Y., Zhang, X.D., Xu, J.R., Qin, L. and Chan, C.W. (2005), "Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo", Biomater., 26(4), 1793-1801. https://doi.org/10.1016/j.biomaterials.2004.06.009
  33. McNally, S.A., Shepperd, J.A., Mann, C.V. and Walczak, J.P. (2000), "The results at nine to twelve years of the use of a hydroxyapatite-coated femoral stem", J. Bone. Joint. Surg. Br., 82(3), 378-382. https://doi.org/10.1302/0301-620X.82B3.10114
  34. Moroni, A., Toksvig-Larsen, S., Maltarello, M.C., Orienti, L., Stea, S. and Giannini, S. (1998), "A comparison of hydroxyapatite-coated, titanium-coated, and uncoated tapered external-fixation pins. an in vivo study in sheep", J. Bone. Joint. Surg. Am., 80(4), 547-554. https://doi.org/10.2106/00004623-199804000-00011
  35. Nishiguchi, S., Kato, H., Fujita, H., Kim, H.M., Miyaji, F., Kokubo, T. and Nakamura, T. (1999), "Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments", J. Biomed. Mater. Res., 48(5), 689-696. https://doi.org/10.1002/(SICI)1097-4636(1999)48:5<689::AID-JBM13>3.0.CO;2-C
  36. Okazaki, Y., Rao, S., Tateishi, T. and Ito, Y. (1998), "Cytocompatibility of various metal and development of new titanium alloys for medical implants", Mater. Sci. Eng. A., 243(1-2), 250-256. https://doi.org/10.1016/S0921-5093(97)00809-5
  37. Ong, J.L., Lucas, L.C., Lacefield, W.R. and Rigney, E.D. (1992), "Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition", Biomater., 13(4), 249-254. https://doi.org/10.1016/0142-9612(92)90192-Q
  38. Pattanayak, D.K., Kawai, T., Matsushita, T., Takadama, H., Nakamura, T. and Kokubo, T. (2009), "Effect of HCl concentrations on apatite-forming ability of NaOH-HCl- and heat-treated titanium metal", J. Mater. Sci. Mater. Med., 20(12), 2401-2411. https://doi.org/10.1007/s10856-009-3815-0
  39. Ratner, B.D. (2001), "Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry", J. Dent. Edu., 65(12), 1340-1347.
  40. Rohanizadeh, R., Al-Sadeq, M. and LeGeros, R.Z. (2004), "Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition", J. Biomed. Mater. Res. A., 71(2), 343-352.
  41. Rupp, F., Scheideler, L., Olshanska, N., De Wild, M. and Wieland, M. (2006), "Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces", J. Biomed. Mater. Res. A., 76(2), 323-334.
  42. Sun, T. and Wang, M. (2008), "Low-temperature biomimetic formation of apatite/TiO2 composite coatings on Ti and NiTi shape memory alloy and their characterization", Appl. Surf. Sci., 255(2), 396-400. https://doi.org/10.1016/j.apsusc.2008.06.123
  43. Takadama, H., Kim, H.M., Kokubo, T. and Nakamura, T. (2001), "TEM-EDX study of mechanism of bone-like apatite formation on bioactive titanium metal in simulated body fluid", J. Biomed. Mater. Res., 57(3), 441-448. https://doi.org/10.1002/1097-4636(20011205)57:3<441::AID-JBM1187>3.0.CO;2-B
  44. Uchida, M., Kim, H.M., Kokubo, T., Fujibayashi, S. and Nakamura, T. (2002), "Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal", J. Biomed. Mater. Res. B. Appl. Biomater., 63(5), 522-530. https://doi.org/10.1002/jbm.10304
  45. Wang, X.J., Li, Y.C., Lin, J.G., Hodgson, P.D. and Wen, C.E. (2008), "Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy", J. Mater. Res., 23(6), 1682-1688. https://doi.org/10.1557/JMR.2008.0195
  46. Yamaguchi, S., Takadama, H., Matsushita, T., Nakamura, T. and Kokubo, T. (2011), "Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment", J. Biomed. Mater. Res. A., 97(2), 135-144.
  47. Yee, A.J., Kreder, H.K., Bookman, I. and Davey, J.R. (1999), "A randomised trial of hydroxyapatite coated prostheses in total hip arthroplasty", Clin. Orthop. Relat. R., 366, 120-132. https://doi.org/10.1097/00003086-199909000-00016
  48. Zhao, G., Schwartz, Z., Wieland, M., Rupp, F., Geis-Gerstorfer, J., Cochran, D.L. and Boyan, BD. (2005), "High surface energy enhances cell response to titanium substrate microstructure", J. Biomed. Mater. Res. A., 74(1), 49-58.