• Title/Summary/Keyword: Elastic Material

Search Result 2,396, Processing Time 0.029 seconds

Grain size effects on the dielectric phase transition in PZT ceramics (PZT 요업체에서 입자 크기가 상전이에 미치는 영향)

  • 정훈택;김호기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.107-109
    • /
    • 1989
  • Based on the ferroelectric microstructural residual stress model, the relation between grain size and residual elastic energy was proposed. It was found that the residual elastic energy increased with decreasing grain size by modeling and DSC results. This residual elastic energy change with grain size which induce the phase transituion mode change was the cause of a diffuse phase transition in small grain size.

  • PDF

Micromechanics Modeling of Functionally Graded Materials Containing Multiple Heterogeneities

  • Yu, Jaesang;Yang, Cheol-Min;Jung, Yong Chae
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.392-397
    • /
    • 2013
  • Functionally graded materials graded continuously and discretely, and are modeled using modified Mori- Tanaka and self-consistent methods. The proposed micromechanics model accounts for multi-phase heterogeneity and arbitrary number of layers. The influence of geometries and distinct elastic material properties of each constituent and voids on the effective elastic properties of FGM is investigated. Numerical examples of different functionally graded materials are presented. The predicted elastic properties obtained from the current model agree well with experimental results from the literature.

2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models

  • Merzoug, Mostafa;Bourada, Mohamed;Sekkal, Mohamed;Abir, Ali Chaibdra;Chahrazed, Belmokhtar;Benyoucef, Samir;Benachour, Abdelkader
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.361-374
    • /
    • 2020
  • This paper is concerned with the thermoelastic bending of FG beams resting on two-layer elastic foundations. One of these layers is Winkler springs with a variable modulus while the other is considered as a shear layer with a constant modulus. The beams are considered simply supported and subjected to thermo-mechanical loading. Temperature-dependent material properties are considered for the FG beams, which are assumed to be graded continuously across the panel thickness. The used theories contain undetermined integral terms which lead to a reduction of unknowns functions. Several micromechanical models are used to estimate the effective two-phase FG material properties as a function of the particles' volume fraction considering thermal effects. Analytical solutions for the thermo-mechanical bending analysis are obtained based on Navier's method that satisfies the boundary conditions. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models, geometric parameters, temperature distribution and elastic foundation parameters on the thermoelastic response of FG beams.

Elastic local buckling of thin-walled elliptical tubes containing elastic infill material

  • Bradford, M.A.;Roufegarinejad, A.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.143-156
    • /
    • 2008
  • Elliptical tubes may buckle in an elastic local buckling failure mode under uniform compression. Previous analyses of the local buckling of these members have assumed that the cross-section is hollow, but it is well-known that the local buckling capacity of thin-walled closed sections may be increased by filling them with a rigid medium such as concrete. In many applications, the medium many not necessarily be rigid, and the infill can be considered to be an elastic material which interacts with the buckling of the elliptical tube that surrounds it. This paper uses an energy-based technique to model the buckling of a thin-walled elliptical tube containing an elastic infill, which elucidates the physics of the buckling phenomenon from an engineering mechanics basis, in deference to a less generic finite element approach to the buckling problem. It makes use of the observation that the local buckling in an elliptical tube is localised with respect to the contour of the ellipse in its cross-section, with the localisation being at the region of lowest curvature. The formulation in the paper is algebraic and it leads to solutions that can be determined by implementing simple numerical solution techniques. A further extension of this formulation to a stiffness approach with multiple degrees of buckling freedom is described, and it is shown that using the simple one degree of freedom representation is sufficiently accurate for determining the elastic local buckling coefficient.

A Study on the Dynamic Elastic Modulus of the materials for Floor Impact Sound Reduction (바닥 충격음 저감용 소재의 동탄성 계수에 관한 연구)

  • Park, Choon-Keun;Lee, Jong-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.930-935
    • /
    • 2005
  • In order to synthesis of the materials and modulus for floor impact sound reduction, we investigated effect on dynamic elastic modulus of floor impact sound reduction materials and module made by inorganic porous materials, EVA chips and so on. We find correlation property between dynamic elastic modulus and light-weight impact noise. And we measured the dynamic elastic modulus of materials and module for floor impact sound reduction. And we predicted reduction efficiency on floor Impact Noise of those. The dynamic elastic modulus is reduced by increase of filler contents and filler species. When the materials for floor impact sound reduction is consisted of l5wt% EVA Chip and l5wt% inorganic porous materials, its dynamic elastic material is the lowest. And when the module is consisted of PE (upper side), PS embossing board(lower side) and the materials for floor impact sound reduction(middle), its dynamic elastic material is the lowest.

  • PDF

Study on Mechanical and Water absorbing Property of Elastic Epoxy for Electric Use (흡습이 탄성형 에폭시의 기계적 특성에 미치는 영향)

  • Lee, Kwan-Woo;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.460-463
    • /
    • 2003
  • In this paper, we present the properties of water absorption of elastic epoxy for high voltage. The ratio of water absorption shows linearly increase according to ${\sqrt}t$ till 66 hours. And rigid epoxy is 0.053 [%], elastic epoxy at addictives 35 [phr] is 0.309 and it at addictives 70 [phr] is 0.44 [%]. The reason where absorption of elastic epoxy is high is because of micro void. It can be confirmed by SEM analysis. Dieletric constant increased linearly by addictives' concentration and tans is also increased by addictives' concentration.

  • PDF

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

Simulation of elastic curve of SW-CNT for chemical sensor application (화학센서 응용을 위한 SW-CNT의 elastic curve의 Simulation)

  • Lee, K.S.;Na, D.S.;Kim, J.K.;Lee, Y.H.;Iu, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.375-376
    • /
    • 2005
  • 탄소나노튜브는 캔틸레버처럼 주어진 압력에 의해 elastic curve를 형성하게 되는데, 이러한 성질은 탄소나노튜브가 가지고 있는 young's modulus와 구조적인 형태에서 기인한다. 따라서 탄소나노튜브의 변위와 인가된 analyte의 농도에 따른 압력 사이의 관계를 이용해 가스센서로의 적용이 가능하다. 이 번 연구에서는 시뮬레이션을 통해 길이가 30nm 이고 반경이 1.5nm로 모델링 된 단일 벽 탄소나노튜브가 3000ppm와 1000ppm ethanol의 농도에 의해 형성된 elastic curve의 최대변위를 구하고, 농도와 단일 벽 탄소나노튜브의 elastic curve의 최대변위가 비례함을 보였다.

  • PDF

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.