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Micromechanics Modeling of Functionally Graded Materials Containing 
Multiple Heterogeneities

 Jaesang Yu*†, Cheol-Min Yang**, Yong Chae Jung**

ABSTRACT: Functionally graded materials graded continuously and discretely, and are modeled using modified Mori-
Tanaka and self-consistent methods. The proposed micromechanics model accounts for multi-phase heterogeneity and
arbitrary number of layers. The influence of geometries and distinct elastic material properties of each constituent and
voids on the effective elastic properties of FGM is investigated. Numerical examples of different functionally graded
materials are presented. The predicted elastic properties obtained from the current model agree well with experimental
results from the literature.
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1. INTRODUCTION

Due to their unique structure and multi-functionality, func-
tionally graded materials (FGMs) are gaining attention and are
being proposed for many applications [1-3]. In FGMs, the
variation of material properties along a specific direction helps
the material to have the desirable material properties of each
constituent at a specific material point with structural conti-
nuity. For example, ceramic/metal FGMs have the important
material properties of metal, such as fracture toughness and
high thermal conductivity, without losing the important prop-
erties of a ceramic, such as hardness and thermal protection
[4-7]. A detailed review on the performance of FGM can be
seen in the literature.

To accurately model FGM, knowing the effective or bulk
material properties as a function of individual material prop-
erties and geometry especially at micromechanics level is
essential. In the last few years, different models have been pro-
posed to estimate the effective properties of FGMs with
respect to reinforcement volume fractions. Weng [8], inves-
tigated the effective bulk moduli of two functionally graded
composites by means of change of the dependent variable.
Rahman and Chakraborty [9] proposed a stochastic micro-
mechanical model for predicting probabilistic characteristics

of three phase FGMs. Pindera et al. [10] used a computational
micromechanical model, the generalized method of cells, to
predict local stress in the fiber and matrix phases of FGMs.
Fang et al. [11], developed a micromechanics-based elasto-
dynamic model to predict the dynamic behavior of two-phase
functionally graded materials.

Zuiker [12] reviewed the micromechanical modeling of
FGMs and concluded that the self-consistent method (SCM)
provided good estimates, with minimal effort, and with no
need for empirical fitting of parameters for the silicon carbide
(SiC) - carbon (C) FGMs. Gasik [13] studied the efficiency of
the simplest micromechanical models to provide the most
accurate estimates of FGM components with an arbitrary non-
linear three-dimensionally orientation of phases. Reiter and
Dvorak [14] used the transition function with Mori-Tanaka
method (MTM) and SCM to predict the thermo-mechanical
properties in C/SiC FGMs. Yin et al., [15,16] used MTM, with
the effect of particle distance interactions, to predict the elastic
and thermoelastic properties of TiC/Ni3Al and Mo/SiO2
FGMs. Similar models are available for two phase functionally
graded materials that contain two different material systems.
The actual functionally graded materials can have more than
two compositions or constituents, and a model that accounts
for multiple heterogeneities is essential.

Received 29 November 2013, accepted 26 December 2013 

*
†

**

한국과학기술연구원 탄소융합소재연구센터, Corresponding author (E-mail: jamesyu@kist.re.kr)
한국과학기술연구원 탄소융합소재연구센터



Micromechanics Modeling of Functionally Graded Materials Containing Multiple Heterogeneities 393

In the present study a modified micromechanics model is
proposed and extended to estimate the effective elastic prop-
erties of FGMs containing multiple heterogeneities with an
arbitrary number of coating layers. Different numerical exam-
ples are considered and compared with experimental results
from the literature.

2. PROBLEM FORMULATION

2.1 Functionally graded materials (FGMs)
Functionally graded materials can be idealized as a com-

bination of a number of discreet layers of nano-composite,
where each of the layers has a defined microstructure that is a
function of the volume fraction of the constituents of the
material. From a micromechanics modeling point of view,
these discrete graded layers can be categorized in three distinct
zones.

Let us consider a functionally graded material, where mate-
rial A, (A could be more than one material) with different
geometry (short fibers, platelets, spheres, etc) is reinforced in a
base material B, and the volume fraction of A is increasing
from one end to the other end as shown in Fig. 1. As shown in
the figure, zone 1 is the region where the reinforcement, phase
A, volume fraction is lower than the base material, phase B,
referred to as the phase B dominant zone. Zone 3 is the region
where the volume fraction of the reinforcement, phase A, is
higher than the base material, phase B, referred to as the phase
A dominant zone. Zone 2 is the region where the volume frac-
tion of phase A and phase B cannot be clearly defined, referred
to as the transition zone. Each layer in Zone 1 and Zone 3 can,
in principle, be modeled similarly using a micromechanics
approach as the volume fraction between the two phases are
distinct enough to satisfy the main assumption.

The main challenge is dealing with the transition zone,
where the matrix and the reinforcement are not sufficiently
distinguishable. Recently, a different method has been pro-
posed to overcome this problem and model the transition

zone. In this zone a linear phenomenological transition func-
tion introduced by Reiter and Dvorak [14] is adopted.

2.2 Micromechanics modeling
2.2.1 Modified Mori-Tanaka method (MTM) for FGM with

multiple heterogeneities and multiple layers
In MTM, the effective material properties for composites

containing arbitrary ellipsoidal heterogeneities can be obtained
using the continuum-averaged stress and strain fields [17-20].
For two phase composites, containing a matrix phase (0) and a
particle phase (1), the effective 4th order elastic stiffness ten-
sor, L, can be expressed as

(1)

where

 (2)

is the local strain concentration tensor for the particles, L(0)
and L(1) are the 4th rank elastic stiffness tensors for the matrix
and particles, c1 is the particles volume fraction, S(1) is the 4th
rank Eshelby [19-21] tensor for the particles, and I is the 4th
rank identity tensor. Here a colon “:” is used to denote the ten-
sor double dot product. The Eshelby tensor (S(1)) accounts for
the influence of the aspect ratio/geometry of the particles on
the local strain field. Eshelby tensors for specific reinforcement
shapes (spheres, platelets, fibers, etc.) are readily available in
the literature [19,20]. For FGMs, the effective elastic property
for each layer through the thickness direction can be estimated
by employing Eq. (5) with either normalized thickness 0 ≤ x ≤
1 or volume fractions of phase (0) and phase (1).

Consider a composite with m types of distinct ellipsoidal
heterogeneities (k = 1, 2, ..., m) in the matrix (0), where each
heterogeneities consists of n layers (αk = 1, 2, ..., nk) graded in
the direction of thickness, having a normalized thickness 0 ≤ z
≤ 1. Each heterogeneity has a distinct elastic property, shape,
and orientation distribution. The strain and stress fields at any
location z with heterogeneities, with arbitrary number of
layers, can be given by

(3)

 (4)

where the homogenizing eigenstrain ( ) is

(5)

where is the local strain concentration tensor for the αk th
layer of the kth heterogeneity (αk = 1, 2, ..., nk, k = 1, 2, ..., m)
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Fig. 1.  Schematic illustration of multi-phase functionally graded
materials (FGMs) 
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of each FGM layer through the thickness direction and can be
given as

(6)

Here is the 4th rank elastic stiffness tensor for the αk th
layer of the kth heterogeneity for FGM layers through the
thickness direction. By substituting Eqs. (5-6) into Eqs. (3-4),
the average strain and stress fields over the infinite domain can
be obtained as

(7)

(8)

The overall elasticity tensor, , for a composite containing
m distinct types of heterogeneities (k = 1, 2, ..., m) with each
having an arbitrary number of layers (nk), in a matrix phase
(0) can be expressed as

(9)

Here  is the volume fraction of the αk th layer of the
kth heterogeneity, and  and  are the effective elastic
property, and matrix phase elastic stiffness in each FGM layer
through the normalized thickness direction, 0 ≤ x ≤ 1. Unlike
in the case of two phase formulation given by Eq. (1), overall
elasticity tensor, , given by Eq. (9) is a function of multiple
material inhomogenity, c(k), and number of layers, αk. Once
the overall elasticity tensor for each layer of FGMs, , is deter-
mined, the relevant elastic moduli can be determined using an
orientation averaging scheme. A detailed discussion along
with computational procedures of an orientation averaging
scheme is available in the paper by Yu et al. [22-24].

2.2.2 Modified self-consistent method (SCM) for FGM with
multiple heterogeneities and multiple layers

Generally, when using the Self-Consistent Method, it is
assumed that a single ellipsoidal heterogeneity is embedded
within a homogeneous matrix with an unknown effective stiff-
ness tensor [22-24]. It is easy to prove that the effective elastic
tensor given by the SCM for FGM layers through the nor-

malized thickness direction, 0 ≤ x ≤ 1, can be obtained from
the MTM model by setting . Unlike MTM, however, in the
SCM model the effective elastic tensor of the homogenized
matrix is unknown, and an iterative procedure is required. In
this model, first an initial effective elastic tensor will be
assumed, and with an iteration scheme the final tensor will be
determined. Suppose that the effective homogeneous medium
with elastic stiffness tensor, , contains m distinct types of
ellipsoidal heterogeneities (k = 1, 2, ..., m), each consisting of
nk layers (αk = 1, 2, ..., nk) in a matrix phase (0). Then the
overall elasticity tensor, , the complete formulation is given
in the literature [22-24], can be expressed as

 (10)

For the case of aligned, two-dimensional randomly oriented
and three-dimensional randomly oriented heterogeneities, the
calculated elasticity tensor for each layer of FGMs will display
orthotropic, transversely isotropic, and isotropic material sym-
metries, respectively. In the present study, the elastic moduli
for each layer of FGMs containing three-dimensionally ori-
ented heterogeneities will be calculated.

3. EFFECTIVE ELASTIC MODULI FOR 
FGMS CONTAINING MULTIPLE HETERO-
GENEITIES

3.1 Effect of material properties and geometry of each
constituent

The modified micromechanics model developed and dis-
cussed above is implemented for FGMs with discrete grada-
tion, where each of the layers in the gradation is considered as
a composite containing multiple heterogeneities. In all numer-
ical examples of FGMs, such as silica spheres, hollow ceno-
spheres, and voids considered, all heterogeneities are assumed
to be well dispersed in the base material and perfectly bonded
to the other phases. Table 1 contains a summary of relevant
mechanical properties of materials used in the calculation. In
all calculations, the FGMs' elastic properties were normalized
by the base material elastic property, E1, in order to clearly
illustrate the effect of the heterogeneities.
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Table 1. Selective material properties and geometries of FGM
considered

Reinforcement/
Matrix

Reinforcement 
dimensions

Young’s modulus 
(GPa)

Hollow cenosphere/
Polyester 

Ds=127 µm
tw=12.7 µm

(Parameswaran and 
Shukla, [25])

Es = 175.0
(Parameswaran and 

Shukla, [25])

Em = 3.5
(Parameswaran and 

Shukla, [25])
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3.1.1 Effect of individual material properties
To understand the effect of the individual elastic properties

on the effective elastic properties of the FGM, different ratios
of elastic material properties were considered. Fig. 2 shows a
plot of the predicted normalized effective elastic moduli (Eeff /
E1) of FGM, for different E2/E1 ratio, as a function of the vol-
ume fraction of the reinforcement. The effective elastic moduli
of FGM for all E2/E1 ratios are increased as the volume frac-
tion of reinforcement increases, and linearly in the case of zone
1 and zone 3. For a relatively low volume fraction of heter-
ogeneity (phase 1, cs ≤ 0.4), the difference in elastic properties
between the heterogeneity and the base material does not
affect the effective elastic properties very much. For a higher
volume fraction of the heterogeneity (phase 3, 0.6 ≤ cs), how-
ever, the effective elastic properties increases as the ratio
between the two material elastic properties increases. Fur-
thermore, there is a jump in effective elastic properties and a
trained change from zone 1 to zone 2 and from zone 2 to zone
3. The jump in effective elastic moduli on the transition zone
is significant for material with a large difference in elastic
material property (E2/E1>>1). Thus, the effective elastic mod-
uli strongly depend on volume fraction and material prop-
erties of each constituent.

3.1.2 Effect of reinforcement geometry
To investigate the effect of reinforcement geometries on the

effective elastic moduli of FGMs, different geometries of rein-
forcements such as a) fibers, b) platelets, and c) spheres are
considered. In this calculation, the ratio of elastic properties
between the reinforcement and the base material is set to be
constant at E2/E1 = 20. The lower and upper boundaries of the
volume fractions of the reinforcement for zone 2 were set 40%
and 60% respectively. Aspect ratios, AR = 100, for fibers
(length/diameter) and platelets (diameter/thickness) were
used. As shown in Fig. 3, the elastic moduli for FGM con-
taining randomly oriented fibers were higher than those pro-

duced by the spheres or the platelets for the same volume
contents of reinforcements. It must be noted that the micro-
mechanics model was not able to predict the effective elastic
moduli for FGM containing fibers in the range of high volume
fraction (0.75 ≤ cf) due to a violation of the basic assumption
of micromechanics.

3.2 Numerical examples
3.2.1 Linearly varying FGM made of matrix reinforced with

hollow cenospheres
Parameswaran and Shukla [25] fabricated FGM consisting

of polyester matrix and hollow cenospheres with = 127 μm
(Ds) diameter and 12.7 μm wall thickness (tw). The rein-
forcements have a thin-walled “egg-shell” type of architecture.
The wall-thickness to diameter ratio, tw/Ds is about 0.1. Fig. 4
shows an optical micrograph of hollow cenospheres in a poly-
ester matrix and experimentally measured normalized elastic
moduli as a function of volume fraction of the cenospheres

Fig. 2. Effect of elastic properties of individual materials (E2/E1)
on predicted effective elastic moduli of FGMs 

Fig. 3. Effect of geometry (fibers, platelets, spheres) of individual
materials on predicted effective elastic moduli of FGMs

Fig. 4. Measured [25] and predicted effective elastic moduli for
hollow cenosphere/polyester FGM (Image from [25]) 
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[25]. The tensile moduli increase with increase in hollow ceno-
spheres volume fraction as shown in Fig. 4. This suggests that
the very thin silica outer wall contributes to the effective FGM
properties. In our micromechanics model, the hollow ceno-
spheres were simulated using a two-layer system, where the
inner layer was ascribed essentially as voids with null material
properties and the outer layer considered as a solid layer of sil-
ica. Fig. 4 shows the effective elastic moduli of the FGM, both
experimental and numerical, as a function of the hollow ceno-
spheres volume fraction. The solution from the current micro-
mechanical model reasonably agrees with the experimentally
measured value.

On the other hand, effective elastic properties were pre-
dicted for FGM with cenospheres having different wall-thick-
ness to diameter ratios (tw/Ds) in a polyester matrix as shown
in Fig. 5. Three distinct wall-thicknesses to diameter ratios, tw/
Ds ≈ 0.5, 0.3, and 0.1, were considered for comparison. The
effective elastic modulus for FGM that contains cenospheres
with thick wall-thickness to diameter ratio (tw/Ds ≈ 0.5) was
higher than that of FGM containing reinforcement with thin
wall-thickness to diameter ratio (tw/Ds ≈ 0.1). Again, this sup-
ports the argument that, the reinforcement outer wall thick-
ness significantly contributes to the overall FGM properties.

3.2.2 FGM composed of titanium monoboride (TiB) and
titanium (Ti) materials

Hill et al. [4] investigated and measured elastic properties
for a FGM composed of ceramic (titanium monoboride
(TiB2)) and metal (titanium (Ti)). Fig. 6 shows a plot of an
optical micrograph of TiB/Ti FGM and experimentally mea-
sured normalized elastic moduli as a function of volume frac-
tion of the TiB [4]. As can be seen in the figure, experimentally
measured effective stiffness for the FGM increases with

increase in volume fraction of TiB. In the current model, the
metal was considered as a base material and the ceramic as
reinforcement. It should be mentioned that, as shown in the
microscopic image in Fig. 6, TiB appears in different shapes,
such as spheres, fibers etc. In this case the FGM was modeled
with metal (Ti) as the base material, reinforced with different
shapes (i.e., fibers, platelets, and spheres) of ceramic (TiB). The
aspect ratio (length to diameter ratio, AR) for fibers was 100,
and for the platelets were 100 and 1000. Here only shows the
case for composites containing a single heterogeneity problem
such as fibers, platelets, and spheres rather than multiple het-
erogeneities problems (combination of heterogeneities in
matrix) due to the fact that curve A (fibers, AR = 100) almost
reached the upper bound (Voigt) of composites in elastic mod-
ulus itself. On the other hands, Curve D (spheres) also reached
the lower bound (Reuss) of composites. Thus, the results for
the case of combination of fibers and platelets (or spheres)
obtained from micromechanics models should lower than the
upper bound (fibers only). Even though the effective FGM
elastic moduli depends on TiB shapes, in all cases the numer-
ical results were lower than experimentally measured data.

4. CONCLUSIONS

The effective elastic properties of functionally graded mate-
rials (FGMs) containing multiple distinct heterogeneities are
predicted using classical micromechanical model. The effec-
tive stiffness of different material has been considered as a
numerical example and verified with experimental results
from the literature. The numerical examples were in reason-
ably good agreement with experimental results from the lit-
erature. It is found that the effective elastic stiffness is highly
dependent on the individual constituent elastic properties and
geometries of the reinforcements.

Fig. 5. Effect of cenosphere wall-thickness ratio (tw/Ds) on pre-
dicted effective elastic moduli for hollow cenosphere/
polyester FGM 

Fig. 6. Measured [4] and predicted effective elastic moduli for
TiB/Ti FGM (Image from [4]) 
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