• Title/Summary/Keyword: Elastic Field

Search Result 820, Processing Time 0.025 seconds

Analysis of Parameters to Influence on Rock Fragmentation in Bench Blasting (벤치발파에서 암석 파쇄도에 영향을 미치는 요인 분석)

  • 최용근;이정인;이정상;김장순
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In bench blasting, rock fragmentation is one of the most important factors determining productivity. Rock fragmentation could be affected by various conditions and these were hewn that rock joint conditions and in-situ block sizes were the biggest effect on it. This research is focused on what or how to influence on rock fragmentation according to relation between blasting conditions and the in-situ rock conditions such as rock joint conditions and in-situ block size. Field measurements were carried out in 3 open pit limestone mines, where in-situ rock conditions and blasting conditions were fully investigated. The results show that the parameters interact with blasting conditions complicatedly and especially in-situ block size has bigger effects. Dip direction of major joint set also can affect on fragmentation. Mean fragment size become smallest when dip direction of major joint set is about $30^{\circ}$ with the bench direction. The reason is considered to be come from difference of propagation paths of elastic wave.

Design and Analysis of Piezoelectric Micro-Pump Using Traveling-Wave (진행파를 이용한 압전 마이크로 펌프의 설계와 해석)

  • Na, Yeong Min;Lee, Hyun Seok;Park, Jong Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.567-573
    • /
    • 2014
  • Since the development of microelectromechanical systems (MEMS) technology for the medical field, various micro-fluid transfer systems have been studied. This paper proposes a micro-piezoelectric pump that imitates a stomach's peristalsis by using two separate piezoelectric elements, in contrast to existing micro-pumps. This piezoelectric pump is operated by using the valve-less traveling wave of peristalsis movement. If the piezoelectric plates at the two separated plates are actuated at the input voltage, a traveling wave occurs between the two plates. Then, the fluid migrates by the pressure difference generated by the traveling wave. Finite element analysis was performed to understand the mechanics of the combined system with piezoelectric elements, elastic structures, and fluids. The effects of design variables such as the chamber height and number of ceramics on the flow rate of the fluid were examined.

Evaluation of Drilled Shaft's End Condition by Impact-Echo Method (충격반향기법에 의한 현장타설 말뚝기초의 선단 조건 평가)

  • Kim, Dong-Soo;Kim, Hyung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • Experimental model studies were carried out to evaluate the end condition for drilled shafts by applying elastic impact on the top of the shaft, which is one of the various methods using stress waves. Typical impact responses corresponding to the various end conditions including free, fixed, rock-socketed, and soft-bottom with good and poor side contact conditions, were investigated. In order to simulate these renditions, mock-up shaft models made of cement mortar were used. Small-scale laboratory experiments were also performed, and field tests were carried out for the shafts that were socketed into weathered rock. It is found that the rock-socketed condition and depth of penetration into rock ran be identified from the reflection at the interface between the soil and rock in the waveform. The soft bottom rendition can be identified, only when the side contact between shaft and surrounding rock is poor, whereas it cannot be identified when the side contact is good because the waveform is similar to that of fixed end rendition.

A Numerical Analysis of Land Use-Transportation Model as a Form of Analytical Tool (수치해석적 토지이용-교통모형의 이론연구 도구화: 교통수요의 내생화를 중심으로)

  • Yu, Sang-Gyun;Rhee, Hyok-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.33-44
    • /
    • 2013
  • The land use-transportation models typically have complicated model structure that is good for empirical execution but bad for theoretical probe. This complexity makes it very difficult to derive the first-order conditions for system optimization in tractable forms. Yu and Rhee (2011) and Rhee (2012) show how to simplify the derivative of the model's objective function with respect to policy variables in the computable general equilibrium model of land use and transportation. However, the travel demand in their model was fixed. This drawback fundamentally limits the applicability of their methodology in the planning field. We relax this restriction. Once this is done, we can employ the methodology developed in analyzing the impacts of various types of policy instruments in the models where land market is treated endogenously and transportation network is embedded.

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

Effects of Bilayer Period on the Microhardness and Its Strengthening Mechanism of CrN/AlN Superlattice Coatings

  • Kim, SungMin;Kim, EunYoung;Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.257-263
    • /
    • 2012
  • CrN/AlN multilayer coatings with various bilayer periods in the range of 1.8 to 7.4 nm were synthesized using a closed-field unbalanced magnetron sputtering method. Their crystalline structure, chemical compositions and mechanical properties have been investigated with Auger electron spectroscopy, X-ray diffractometry, atomic force microscopy, nanoindentation, scratch tests. The properties of the multilayer coatings varied strongly depending upon the magnitude of the bilayer period. The multilayer coating with a bilayer period of 1.8 nm showed the maximum hardness and an elastic modulus of approximately 37.6 and 417 GPa, respectively, which was 1.54 times higher than the hardness predicted by the rule of mixture from the CrN and AlN coatings. The hardness of the multilayer coating increased as the bilayer period decreased, i.e. as the rotation speed increased. The Hall-Petch type relationship, hardness being related to (1/periodicity)$^{-1/2}$, suggested by Lehoczky was confirmed for the CrN/AlN multilayer coatings with bilayer period close to the 5-10 nm range. With decreasing bilayer period, the surface morphology of the films became rougher and the critical load of films for adhesion strength gradually decreased.

Measurement of Viscoelastic Constants from Multiple Phase MR Elastography Fitting Elastic Wave (탄성파를 적용한 다중 위상 MR Elastography로부터의 점탄성 정수의 측정)

  • Jung, Nam-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.119-129
    • /
    • 2012
  • In the medical field, the hardening of tissues is one of important informations used in diagnosis or understanding progress of disease, a quantitative measuring method of hardening is important for objective diagnosis. It has been proposed MRE(Magnetic Resonance Elastography) method that measures an index of hardening, viscoelastic properties in a noninvasive. Because the S/N ratio of MRE images go down when measuring viscoelastic properties from local wavelength and local damping factor of a propagating wave in MRE method, methods using multiple phase MRE images have been examined to decrease the effect of noise. We propose a method measuring viscoelastic properties after Fitting a function for multiple phase MRE images in this research. This proposed method has a advantage to set up arbitrarily the variation rate of a space direction of viscoelastic properties or the spatial resolution of measuring values according to changing of the noise included in images, though it applies viscoelastic wave for multiple phase MRE images. We confirmed the effectiveness of a proposed method by experiment using simulation images and experiment using silicone-gel phantom.

FATIGUE LIFE ESTIMATION OF IMPLANT USING A FINITE ELEMENT METHOD (유한요소법을 이용한 치아 임플랜트 피로수명 예측)

  • Han In-Sook;Son Jung-Hun;Yang Young-Soo;Lee Seung-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Purpose : The purpose of this study is to use finite element analysis to predict the fatigue life of an implant system subjected to fatigue load by mastication (chewing force). The reliability and the stability of implant system can be defined in terms of the fatigue strength. Not only an implant is expensive but also it is almost impossible to correct after it is inserted. From a bio-engineering standpoint, the fatigue strength of the dental implant system must be evaluated by simulation (FEA). Material and Methods Finite element analysis and fatigue test are performed to estimate the fatigue strength of the implant system. Mesh of implant is generated with the actual shape and size. In this paper, the fatigue strength of implant system is estimated. U-fit (T. Strong, Korea, internal type). The stress field in implant is calculated by elastic-plastic finite element analysis. The equivalent fatigue stress, considering the contact and preload stretching of a screw by torque for tightening an abutment, is obtained by means of Sine's method. To evaluate the reliability of the calculated fatigue strength, fatigue test is performed. Results: A comparison of the calculated fatigue strength with experimental data showed the validity and accuracy of the proposed method. The initiation points of the fatigue failure in the implant system exist in the region of high equivalent fatigue stress values. Conclusion: The above proposed method for fatigue life estimation tan be applied to other configurations of the differently designed and improved implant. In order to prove reliability of prototype implant, fatigue test should be executed. The proposed method is economical for the prediction of fatigue life because fatigue testing, which is time consuming and precision-dependent, is not required.

A Study of Electrostrictive Polymer(EP) Actuator Using Dielectric Elastomers (유전성 탄성체를 이용한 전기변형 고분자 구동체의 특성 연구)

  • 황성덕;이경섭;김홍경;최혁렬;김훈모;전재욱;이영관;남재도
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.113-120
    • /
    • 2002
  • Electrostriction is the phenomenon that a material is strained due to Maxwell stress developed by the applied voltage. In many electrostrictive materials, especially polymeric elastomers can produce large deformation and force due to their low elastic modulus. In this study, polyurethanes and acrylic rubber with compliant electrodes were used as electrostrictive polymer(EP) actuator. Actuation characteristics of the EP actuators with different physical properties of dynamic modulus and dynamic dielectiric constant were analyzed under AC field. The classical laminate theory was also used to simulate the actuation process in relation to the geometry and the physical properties of the actuators.

Feasibility Study of MR Elastomer-based Base Isolation System (MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구)

  • Jang, Dong-Doo;Usman, Muhammad;Sung, Seung-Hoon;Moon, Yeong-Jong;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.597-605
    • /
    • 2008
  • The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.