DOI QR코드

DOI QR Code

Design and Analysis of Piezoelectric Micro-Pump Using Traveling-Wave

진행파를 이용한 압전 마이크로 펌프의 설계와 해석

  • Received : 2013.10.10
  • Accepted : 2014.03.03
  • Published : 2014.05.01

Abstract

Since the development of microelectromechanical systems (MEMS) technology for the medical field, various micro-fluid transfer systems have been studied. This paper proposes a micro-piezoelectric pump that imitates a stomach's peristalsis by using two separate piezoelectric elements, in contrast to existing micro-pumps. This piezoelectric pump is operated by using the valve-less traveling wave of peristalsis movement. If the piezoelectric plates at the two separated plates are actuated at the input voltage, a traveling wave occurs between the two plates. Then, the fluid migrates by the pressure difference generated by the traveling wave. Finite element analysis was performed to understand the mechanics of the combined system with piezoelectric elements, elastic structures, and fluids. The effects of design variables such as the chamber height and number of ceramics on the flow rate of the fluid were examined.

최근에, 의학 분야의 MEMS 기술이 발전하면서 다양한 미세 유체 이송 시스템이 연구되고 있다. 본 논문에서는 기존의 펌프와는 다른, 두 개의 분리된 압전 판을 이용해 위장의 연동 운동을 모방한 마이크로 압전 펌프를 제안한다. 본 펌프는 진행파를 이용해 연동 운동을 일으켜 작동된다. 특히, 압전판에서 인가된 입력 전압에 의해 발생된 변위에 의해 동작된다. 이에 두 판 사이에서 진행파가 일어나며 유체는 진행파에 의해 생성된 압력차에 의해 이동된다. 압전 소자, 탄성체, 유체가 복합된 시스템을 이해하기 위해서 유한 요소 해석을 사용하였다. 챔버의 높이, 세라믹 개수 등의 설계 변수들을 변화시켜 유체의 유량을 확인하였다.

Keywords

References

  1. Choi, J. P., Cho, K. C., Kim, H. Y. and Kim, B. H., "Development of Backflow Evented Micropump," Proceedings of the Korean Society For Technology of Plasticity Conference, 2005 May 01:229-232
  2. Kang, J. H., 2005, "A High Power Micropump Using Active Check Valves Driven by Piezoelectric Actuators," Journal of the Korean Society of Manufacturing Technology, 4(4), pp. 39-47.
  3. Cho, W. Y., Ham, Y. B., Seo, W. S., Park, J. H., Yun, S. N. and Choi, B. O., 2007, "Development of a PZT Pump for Liquid Cooling of High Heat Emission Electronic Devices," Journal of the Korean Society for Precision Engineering, June 20, pp. 601-602
  4. Ogawa, J., Kannoa, I. and Kotera, H., 2009, "Development of Liquid Pumping Devices Using Vibrating Microchannel Walls," Sensors and actuators A: Physical, 152(2) pp. 211-218. https://doi.org/10.1016/j.sna.2009.04.004
  5. Oh, J. H., Lim, J. N. and Jeong, E. H., 2009, "Valveless Piezoelectric Micro-Pump Exploiting Two Sided Disk Type Vibrator," Journal of The Korean Institute of Electrical and Electronic Material Engineers, 10(18) pp. 159-159.
  6. Yoon, J. S., Choi, J. W., Lee, I. H. and Kim, M. S., 2007, "A Valveless Micropump for Bidirectional Applications," Sensors and Actuators A: Physical, 135(2) pp. 833-838. https://doi.org/10.1016/j.sna.2006.08.017
  7. Jang, L. S., Yu, Y. C., 2008, "Peristaltic Micropump System with Piezoelectric Actuators," Microsystem Technologies : Sensors, Actuators, Systems Integration, 14(2) pp. 241-248.
  8. Yang, H., Tsai, T.-H. and Hu, C.-C., 2008, "Portable Valve-Less Peristaltic Micropump Design and Fabrication," Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 273-278.
  9. Ueha, S. and Tomikawa, Y., 1991, "Ultrasonic Motor New Edition," pp. 6-12.
  10. Ueha, S. and Tomikawa, Y., 1991, "Ultrasonic Motor New Edition," pp. 8-12.
  11. Shim, J. S., Kim, H. C. and Jo, M. K., 2011, "COMSOL MULTIPHYSICS Introduction," pp. 436-436.
  12. Ham, Y. B., Oh, S. J., Seo, W. S., Park, J. H. and Yun, S. N., 2009, "A Piezoelectric Micropump for Microscale Pumping Systems," Journal of the Korea Fluid Power Systems Society, Vol. 6 No. 2, pp. 17-25.
  13. White, F. M., 2011, "Fluid Mechanics," 7/e, McGraw-Hill, pp. 840-840.