Feasibility Study of MR Elastomer-based Base Isolation System

MR 엘라스토머를 이용한 기초격리 시스템에 대한 타당성 연구

  • Published : 2008.12.30

Abstract

The feasibility study of a newly proposed smart base isolation system employing magneto-rheological elastomers(MREs) has been carried out. MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration mitigation of civil engineering structures such as bridges and buildings in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base isolation system by improving the robustness of the system wide stiffness range controllable of MREs, which improves the adaptability and helps in better vibration control. To validate the effectiveness of the MRE-based isolation system, an extensive numerical simulation study has been performed using both single-story and five-story building structures employing base isolated devices under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

본 논문에서는 지진으로부터 구조물을 효과적으로 보호하기 위하여 MR 엘라스토머(MRE)를 이용한 새로운 형태의 스마트 기초격리 시스템을 제안하고, 이에 대한 내진성능을 파악하였다. MRE는 자성물질을 포함한 실리콘 혹은 고무로써 자기장에 의해 강성이 변하는 스마트 재료이다. 기초격리 시스템은 토목 및 건축분야에서 구조물의 내진성능 향상을 위해 가장 널리 쓰이는 장치로 지반과 구조물을 격리시켜 구조물에 가해지는 입력 하중을 감소시켜주는 장치이다. 기존 수동형태의 기초격리 장치는 다양한 입력하중에 대한 적응성이 부족하고 기초격리 장치에서의 과도한 변위 등의 단점이 있는 반면, 새로 제안한 시스템은 제어 가능한 강성범위가 넓어 이를 개선할 수 있다. MRE를 이용한 기초격리 장치의 성능을 확인하기 위하여 기초격리 장치를 도입한 단층 및 5층의 건물에 대해 다양한 역사지진 하중을 이용하여 수치해석을 수행하였다. 수치해석 결과, 제안된 시스템은 기존 수동형태의 시스템에 비해 구조물의 응답 및 기초격리장치의 변위를 감소시키는 데 탁월한 효과가 있음을 확인하였다.

Keywords

References

  1. 황인호, 임종혁, 이종세 (2006) A Study on Base Isolation Performance of Magneto-Sensitive Rubbers, 한국지진공학회, 10, pp.77-84 https://doi.org/10.5000/EESK.2006.10.4.077
  2. Dyke, S. J., Spencer Jr., B. F., Sain, M. K., Carlson, J. D. (1996) Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials and Structures, 5, pp.565-575 https://doi.org/10.1088/0964-1726/5/5/006
  3. Feng, Q., Shinozuka, M. (1990) Use of a Variable Damper for Hybrid Control of Bridge Response under Earthquake. Proceedings of U.S. National Workshop on Structural Control Research. USC Publication No. CE-9013
  4. Gandhi, F., Anusonti-Inthra, P. (2003) Adaptive Control of Semiactive Variable Stiffness Devices for Narrow-Band Disturbance Rejection. Journal of Intelligent Material Systems and Structures, 14, pp.191-201 https://doi.org/10.1177/1045389X03014003007
  5. Gavin, H. P., Hanson, R. D., Filisko, F. E. (1996) Electrorheological Dampers part 1: Analysis and Design, Journal of Applied Mechanics, ASME, 63, pp.668-675
  6. Ginder, J. M., Nicholas, M. E., Elie, L. D., Clark, S. M. (2000) Controllable-Stiffness Components Based on Magnetorhsologioal Elastomers. Proceedings of SPIE3985. pp.418-425
  7. Ginder, J. M., Schlotter, W. F., Nicholas, M. E. (2001) Magnetorheological Elastomers in Tunable Vibration Absorbers. Smart Structures and Materials 2001: Damping and Isolation, 4331, pp.102-110
  8. Hua-xia, D., Xing-Iong, G., Lian-hua, W. (2006) Development of an Adaptive Tuned Vibration Absorber with Magnetorheological Elastomer, Smart Materials and Structures, 15, pp.111-116 https://doi.org/10.1088/0964-1726/15/5/N02
  9. Kelly, J. M., Leitmann, G., Soldatos, A. G. (1987) Robust Control of base-Isolated Structures under Earthquake Excitation, Journal of Optimization Theory Application, 53, pp.159-180 https://doi.org/10.1007/BF00939213
  10. Koo, J. H., Khan, F., Jang, D. D., Jung, H. J. (2008) Dynamic Characterization and Modeling of Magneto-Rheological Elastomers Under Compressive Loadings, Proceedings of 11th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, Dresden, Germany
  11. Markris, N. (1997) Rigidity-Plasticity-Viscosity: Can Electrorheological Dampers Protect Base-Isolated Structures from Near Source Earthquakes, Earthquake Engineering and Structural Dynamics, 26, pp.1399-1406
  12. MATLAB을 이용한 제어시스템 설계, Mathworks
  13. Nishmura, H., Kojima, A. (1998) Robust Vibration Usolation Control for a Seismically Excited Building, Proceedings of Second World Conference on Structural Control, Kyoto, Japan, 2, pp.1399-1406
  14. Ramallo, J. C., Johnson, E. A., Spencer Jr., B. F. (2002) Smart Base Isolation Systems, Journal of Engineering Mechanics, ASCE, 128, pp.1088-1099 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
  15. Soong, T. T. (1990) Active Structural Control: Theory and Practice, Longman Scientific&Technical, UK
  16. Spencer Jr., B. F., Dyke, S. J., Sain, M. K., Carlson, J. D. (1997) Phenomenological Model of a Magnetorhsological Damper, Journal of Engineering Mechanics, ASCE, 12, pp.230-238
  17. Wang, Y. L., Hu, Y., Gong, X. L., Jiang, W. Q., Zhang, P. Q., Ghen, Z. (2006) Preparation and Properties of Magnetorhsological Elastomers based on Silicon Rubber/Polystyrene Blend Matrix. Journal of Applied Polymer Science, 103, pp.3143-3149
  18. Watson, J. R. (1996) US Patent 0509353
  19. Yang, G., Ramallo, J. C., Spencer Jr., B. F., Carlson, J. D., Sain, M. K. (2000) Large-Scale MR Fluid Dampers: Dynamic Performance Consideration, Proceeding of International Conference on Advances in Structure Dynamics, HongKong, China, 1, pp.341-348
  20. Yoshioka, H., Ramallo, J. C., Spencer Jr., B. F. (2002) Smart Base Isolation Strategies Employing Magnetorheological Damper, Journal of Structural Engineering, ASCE, 128, pp.540-551