• 제목/요약/키워드: Elastic Creep Analysis

검색결과 111건 처리시간 0.025초

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

ETFE 필름의 2축 인장특성 및 텐션방식 막구조물의 응력완화 거동에 관한 실험적 연구 (An Experimental Study on Biaxial Tensile Characteristics of ETFE Film and Stress Relaxation of Tension Typed Membrane Structures)

  • 김승덕;정을석;카와바타 마사야
    • 한국공간구조학회논문집
    • /
    • 제16권1호
    • /
    • pp.35-42
    • /
    • 2016
  • Until recently, almost all ETFE film structures that have been erected is the cushion type because there are problems at lower allowable strength under elastic range and viscosity behaviour such as creep and relaxation of ETFE films under long-term stresses. But the number of tension type structures is currently increasing. This paper proposes the stretch fabrication of ETFE film to verify the applicability of ETFE films to tensile membrane structures. First of all, to investigate the possibility of application on tensile membrane structures, the stretch fabrication test is carried out, and it is verified that it is possible to increase the yield strength of the film membrane structures. After simulating the experiment also carries out an analytical investigation, and the effectiveness of the elasto-plastic analysis considering the viscous behavior of the film is investigated. Finally, post-aging tension measurement is conducted at the experimental facilities, and the viscosity behavior resulting from relaxation is investigated with respect to tensile membrane structures.

Mini-Mill 연속주고기의 동적 Bulging해석 Model(I) -주편의 변형거동을 중심으로- (A Deformation Behavior Analysis of Dynamic Bulging in the Mini-Mill Continuous Casting System)

  • 한성욱;정영진;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.138-143
    • /
    • 1998
  • The continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, replacing the conventional route of ingot casting plus rolling. To achieve this good merit, however, more studies about a heat transfer mechanism between roll and slab are needed. So this paper shows the results of the deformation behavior of steel cast slabs, which are about the solidification and heat transfer. This study is used to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure and slab-self weight has been computed in terms of creep and elastic-plasticity. The high strand distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

  • PDF

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로- (Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell-)

  • 조진구
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석 (Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems)

  • 김경찬;김재요
    • 한국전산구조공학회논문집
    • /
    • 제35권2호
    • /
    • pp.119-129
    • /
    • 2022
  • 초고층 건물에서 수평변위 제어와 수직부재에서 발생하는 부등축소에 대한 검토가 필수적이다. 이러한 부등축소는 비구조요소의 사용성과 구조요소의 안전성에 대해 문제를 야기할 수 있다. 따라서 이 연구에서는 120층 규모의 철근콘크리트 주거용 초고층 건물에 대해 시공단계해석을 수행하여 각 수직부재의 부등축소량을 비교하고 콘크리트의 장기거동의 영향을 분석하였다. 이를 위해 영향요인에 따라 축소량을 탄성축소량, 크리프축소량, 건조수축축소량으로 구분하여 검토하였으며 최대 절대축소량에 대한 지배적 요인을 분석하였다. 또한, 입주완료 후 30년에서 발생한 부등축소량에 대해 사용성 검토를 진행하였으며, 구조요소에 대해 설계단계와 시공단계의 부재력을 비교하여 분석하였다.

개량형 9Cr-1Mo 강의 열화도 평가를 위한 기계적 성질 및 초음파 특성 분석 (Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel)

  • 현양기;원순호;이상훈;손영호;이재훈;김인배
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.198-204
    • /
    • 2010
  • Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.

차량의 이동하중과 하중형태가 연성 포장의 거동 특성에 미치는 영향 평가 (Effects of Moving Dynamic Vehicle Loads on Flexible Pavement Response)

  • 조명환;김낙석;남영오;임종혁
    • 한국방재학회 논문집
    • /
    • 제8권1호
    • /
    • pp.39-45
    • /
    • 2008
  • 일반적으로 아스팔트 콘크리트 포장의 수치해석은 순간적으로 최대 하중이 재하 되는 크리프 컴플라이언스(creep compliance) 개념을 가지고 수행되지만 실제 차량의 하중은 시간에 따라 크기가 변화하게 된다. 따라서 본 연구에서 차량의 이동 속도를 변화(25km/hr, 50km/hr, 80km/hr)시키며 현장의 포장 거동을 측정하고, 비선형 접지압력과 차량의 이동속도를 고려한 3차원 유한요소해석으로부터 얻어진 포장의 예측 거동을 비교 분석하였다. 현장거동에서 차량의 중간바퀴와 뒷바퀴에서 발생하는 횡방향 변형률과 종방향 변형률이 아스팔트 콘크리트 기층 하부에서 약 40%정도 차이가 나는 것으로 나타났으며 예측거동에서도 유사한 경향을 보여주었다. 그러나 예측거동의 경우 재료의 점탄성을 고려하지 못하고, 실제 하중의 이동을 완벽하게 고려하지 못했기 때문에 임계지점으로 차량이 접근하는 경우와 접근후에 대해서 정확한 설명이 힘든 것으로 나타났다.

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Yilmaz Guvercin;Sevval Ozturk;Murat Yaylaci
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.567-577
    • /
    • 2023
  • The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

철근콘크리트 고층건물 기둥의 부등축소량 해석 및 보정을 위한 시스템 개발 (System Development for Analysis and Compensation of Column Shortening of Reinforced Concrete Tell Buildings)

  • 김선영;김진근;김원중
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.291-298
    • /
    • 2002
  • 최근 사용재료의 품질과 설계기법의 향상으로 철근콘크리트 고층구조물에 대한 시공이 활발히 이루어지고 있다. 그러나 대부분의 경우에 시간의존적 비탄성변형을 무시하고 있다. 특히 시공단계에서 발생하는 초기변형은 장기적으로 구조물에 심각한 영향을 미칠 수 있다. 또한, 고층구조물에서 발생하는 부등축소는 탄성변형, 크리프, 건조수축 등이 조합되어 일어나기 때문에 고층구조물의 부등축소를 예측하고 실제 현장에서 보정하기 위해서는 장기거동에 대한 해석이 필수적이다. 본 연구에서는 동바리의 설치/제거를 포함한 실제적인 시공과정을 반영할 수 있는 2차원 골조해석 시스템을 개발하였다. 해석 시스템은 데이터베이스 설계기법과 그래픽 사용자 인터페이스(graphic user interface) 환경에서 개발되었으며, Input module, DB Strore module, Database module, Analytical module, Analysis result generation module로 크게 구성되어 있다. 해석 시스템은 시공단계별로 해석을 반복해석을 수행함으로써 발생하는 수많은 데이터와 정보를 데이터베이스 설계를 통해 효율적인 시스템 관리를 한다. Graphic user interface(GUI) 환경의 지원에 의해 사용자가 데이터의 입력, 수정, 검색 작업을 쉽게 할 수 있으며 해석결과를 그래픽 다이어그램(graphic diagram), 테이블(table), 차트(chart) 등으로 확인할 수 있다. 개발된 시스템은 거푸집과 동바리의 설치 및 제거를 포함하는 일반적인 시공단계를 고려할 수 있으며 기둥의 부등축소량을 예측할 수 있으며, 각각의 시공단계별로 발생하는 기둥의 부등축소량을 실제 실무에서 보정할 수 있도록 지원한다.