Browse > Article
http://dx.doi.org/10.12656/jksht.2010.23.4.198

Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel  

Hyun, Y.K. (Industrial Technology Support Division, Korea Institute of Materials Science)
Won, S.H. (Industrial Technology Support Division, Korea Institute of Materials Science)
Lee, S.H. (Industrial Technology Support Division, Korea Institute of Materials Science)
Son, Y.H. (Industrial Technology Support Division, Korea Institute of Materials Science)
Lee, J.H. (Industrial Technology Support Division, Korea Institute of Materials Science)
Kim, I.B. (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.23, no.4, 2010 , pp. 198-204 More about this Journal
Abstract
Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.
Keywords
Modified 9Cr-1Mo steel; Materials characterization; Nondestructive testing; Material degradation; Nanoindentation; Ultrasonic properties; Elastic modulus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. R. Brinkman, B. and Gieseke, P. J. Maziasz : TMS, (1993) 107.
2 R. L. Klueh and A. T. Nelson : J. Nucl. Mater., 371 (2007) 37.   DOI   ScienceOn
3 K. Hamada, K. Tokuno, Y. Tomita, H. Mabuchi, and K. Okamoto : ISIJ Int., 35 (1995) 86.   DOI   ScienceOn
4 K. Sawada, M. Takeda, K. Maruyama, R. Komine, and Y. Nagae : ISIJ Int., 84 (1999) 581.
5 H. Kushima, K. Kimura, and F. Abe : ISIJ Int., 85 (1999) 841.
6 H. Okamura, et al. : Nucl. Eng. Des., 193 (1999) 243.   DOI   ScienceOn
7 E. P. Papadakis : Rev. Sci. Instrum., 47 (1976) 806.   DOI   ScienceOn
8 W. C. Oliver and G. M. Pharr. : J. Mater. Res., 7 (1992) 1564.   DOI
9 ISO 14577-2, Instrumented indentation test for hardness and materials parameters (2002).
10 ASTM A370-09ae1, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM, Philadelphia, PA., (2009).
11 Y. K. Hyun, J. D. Lee, and I. B. Kim : Key Eng. Mat., 270 (2004) 1206.
12 G. Sposito, et al. : NDT&E Int., (2010). doi:10.1016/j.ndteint2010.05.012.
13 J. E. Lee, Y. C. Kim, J. P. Ahn, and H. S. Kim : Acta Mater. 53 (2005) 129.   DOI   ScienceOn
14 M. Vasudevan, et al. : Scr. Metall. Mater. 30 (1994) 1479.   DOI   ScienceOn
15 P. Palanichamy, et al. : NDT&E Int. 33 (2000) 253.   DOI   ScienceOn
16 M. Hattestrand, M. Schwind, and H.O. Andren : Mater. Sci. Eng. A 250 (1998) 27.
17 S. Saroja, et al. : Acta Metall. Mater. 43 (1995) 2985.   DOI   ScienceOn
18 T. Morishita, and M. Hirao : Int. Solid Struct. 34 (1997) 1169.   DOI   ScienceOn
19 H. Jeong, and D. H. Kim : Mater. Sci. Eng. A 337 (2002) 82.
20 R. Truell, C. Elbaum and B. B. Chick : Ultrasonic Methods in Solid State Physics, Academic Press, Inc. (1969).
21 I. N. Sneddon : Int. J. Eng. Sci., 3 (1965) 47.   DOI   ScienceOn