• Title/Summary/Keyword: Elastic Contact Theory

Search Result 87, Processing Time 0.026 seconds

Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I)-Vibration Analysis- (Waviness가 있는 볼베어링으로 지지된 회전계의 동특성해석 (I) -진동 해석-)

  • Jeong, Seong-Weon;Jang, Gun-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2636-2646
    • /
    • 2002
  • This research presents an analytical model to investigate vibration due to ball bearing waviness in a rotating system supported by two or more ball bearings, taking account of the centrifugal force and gyroscopic moment of the ball. The waviness of rolling elements is modeled by the sinusoidal function, and it is incorporated into the position vectors of the race curvature center. The Hertzian con tact theory is applied to calculate the elastic deflection and nonlinear contact force while the rotor has translational and angular motions. Both the centrifugal force and gyroscopic moment of the ball and the waviness of the rolling elements are included in the kinematic constraints and force equilibrium equations of a ball to derive the nonlinear governing equations of the rotor, which are solved by using the Runge-Kutta-Fehlberg algorithm to determine the new position of the rotor. The proposed model is validated by the comparison of the results of the prior researchers. This research shows that the centrifugal force and gyroscopic moment of the ball plays the important role in determining the bearing frequencies, i.e. the principal frequencies, their harmonics and the sideband frequencies resulting from the waviness of the rolling elements of ball bearing. It also shows that the bearing vibration frequencies are generated by the waviness interaction not only between the rolling elements of one ball bearing but also between those of two or more ball bearings constrained by the rotor.

Free Vibrations of Circular Uniform Strips Resting on Two Parameter Elastic Foundation (두 변수 탄성지반으로 지지된 원호형 등단면 띠기초의 자유진동)

  • Lee, Jong-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.125-134
    • /
    • 2009
  • This paper deals with the free vibrations of circular strip foundations which have uniform solid rectangular cross-section. The ground which supports circular strips was modeled as the two parameter elastic foundation. Differential equations governing the flexural-torsional free vibrations of circular strips supported by such foundation were derived, and solved numerically for obtaining the natural frequencies and mode shapes. Boundary condition of free-free ends was considered for numerical examples. Four lowest natural frequencies according to the variations of five system parameters i.e. subtended angle, depth ratio, contact ratio, elasticity ratio and soil parameter are reported in the non-dimensional forms. Also, typical mode shapes of both deformations and stress resultants are presented in the figures. Experiment was conducted for validating the theory developed in this study.

Development of Elastic Shaft Alignment Design Program (선체변형을 고려한 탄성 축계정렬 설계 프로그램 개발)

  • Choung Joon-Mo;Choe Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.512-520
    • /
    • 2006
  • The effects of flexibilities of supporting structures on shaft alignment are growing as ship sizes are Increasing mainly for container carrier and LNG carrier. But, most of classification societies not only do not suggest any quantitative guidelines about the flexibilities but also do not have shaft alignment design program considering the flexibility of supporting structures. A newly developed program, which is based on innovative shaft alignment technologies including nonlinear elastic multi-support bearing concept and hull deflection database approach, has S basic modules : 1)fully automated finite element generation module, 2) hull deflection database and it's mapping module on bearings, 3) squeezing and oil film pressure calculation module, 4) optimization module and 5) gap & sag calculation module. First module can generate finite element model including shafts, bearings, bearing seats, hull and engine housing without any misalignment of nodes. Hull deflection database module has built-in absolute deflection data for various ship types, sizes and loading conditions and imposes the transformed relative deflection data on shafting system. The squeezing of lining material and oil film pressures, which are relatively solved by Hertz contact theory and built-in hydrodynamic engine, can be calculated and visualized by pressure calculation module. One of the most representative capabilities is an optimization module based on both DOE and Hooke-Jeeves algorithm.

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

Plane-Strain Analysis of Auto-Body Panel Using the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 자동차 판넬 성형공정의 평면 변형해석)

  • 양동열;정완진;송인섭;전기찬;유동진;이정우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.169-178
    • /
    • 1991
  • A plane-strain finite element analysis of sheet metal forming is carried out by using the rigid-plastic FEM based on the membrane theory. The sheet material is assumed to possess normal anisotropy and to obey Hill's new yield criterion and its associated flow rule. A formulation of initial guess generation for the displacement field is derived by using the nonlinear elastic FEM. A method of contact treatment is proposed in which the skew boundary condition for arbitrarily shaped tools is successively used during iteration. In order to verify the validity of the developed method, plane-strain drawing with tools in analytic expression and with arbitrarily shaped tools is analyzed and compared with the published results. The comparison shows that the present method can be effectively used in the analysis of plane-strain sheet metal forming and thus provides the basis of approximate sectional analysis of panel-like sheet forming.

The Accuracy Design of LM Guide System in Machine Tools (공작기계 직선 베어링 안내면의 정도 설계에 관한 연구)

  • 김경호;박천홍;송창규;이후상;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.692-695
    • /
    • 2000
  • This paper is concerned with Accuracy Design of LM Guide System in Machine Tools. Elastic deformation of bearing is calculated by Hertz contact theory and motion error of LM block is analyzed. A new algorithm using block stiffness is proposed fur the analysis of motion accuracy of the table. The best advantage of this algorithm is fast analysis speed because it isn't necessary iteration processes for satisfying equilibrium equation of the table. Motion errors of the table analyzed under artificial form error of rail theoretically and experimentally. Only one of two rails is bent by putting a thickness gauge into horizontal direction. This form error of rail is measured by gap sensor against the other rail. Then, motion errors of the table are predicted by proposed new algorithm theoretically and measured by laser interferometer. Measurements are carried out by changing the preload and thickness. The results show that the table motion errors are reduced from 1/2 to 1/60 times than form error of rail according to its height and width. And the effect of preloading is almost negligible.

  • PDF

A SIMPLIFIED METHOD TO PREDICT FRETTING-WEAR DAMAGE IN DOUBLE $90^{\circ}$ U-BEND TUBES

  • Choi, Seog-Nam;Yoon, Ki-Seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.616-621
    • /
    • 2003
  • Fluid-elastic instability is believed to be a cause of the large-amplitude vibration and resulting rapid wear of heat exchanger tubes when the flow velocity exceeds a critical value. For sub-critical flow velocities, the random turbulence excitation is the main mechanism to be considered in predicting the long-term wear of steam generator tubes. Since flow-induced interactions of the tubes with tube supports in the sub-critical flow velocity can cause a localized tube wear, tube movement in the clearance between the tube and tube support as well as the normal contact force on the tubes by fluid should be maintained as low as possible. A simplified method is used for predicting fretting-wear damage of the double $90^{\circ}$U-bend tubes. The approach employed is based on the straight single-span tube analytical model proposed by Connors, the linear structural dynamic theory of Appendix N-1300 to ASME Section III and the Archard's equation for adhesive wear. Results from the presented method show a similar trend compared with the field data. This method can be utilized to predict the fretting-wear of the double $90^{\circ}$U-bend tubes in steam generators.

  • PDF

Analysis of Tilting Pad Journal Bearings Considering Pivot Stiffness (피봇 강성을 고려한 틸팅 패드 저널 베어링의 해석)

  • Choi, Tae Gyu;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2014
  • This study set out to predict the load capacity and rotordynamic coefficients of tilting-pad journal bearings, taking the pivot stiffness into account. The analysis uses rocker-back (cylindrical) and ball in socket (spherical) pivot models, both of which are based on Hertzian contact stress theory. The models ascertain the non-linear elastic deformation of the pivots according to the applied load, pivot geometry, and material properties. At present, the Reynolds equation for an isothermal, isoviscous, and incompressible fluid is used to calculate the film pressure by using the finite-element method, after which the Newton-Raphson method is used to simultaneously find the journal center location, pad angles, and pivot deflections. The bearing analysis, excluding the pivot models, is validated using predictions those are readily available in the literature. As the rotor speed increases, the predicted journal eccentricity and damping coefficients decrease, but the stiffness coefficients increase, as expected. Most importantly, the implementation of the pivot models increases the journal eccentricity but significantly decreases the stiffness and damping coefficients of the tilting-pad journal bearings.