• Title/Summary/Keyword: Elastic Contact Problem

Search Result 105, Processing Time 0.026 seconds

An Axisymmetric Finite Element Analysis of Hot Tube Extrusion Using Ceramic Dies (세라믹 금형을 이용한 열간 튜브 압출의 축대칭 유한요소해석)

  • Kang, Yeon-Sick;Yang, Dong-Yol;Chung, Soon-Kil;Lee, June-Gunn
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 1998
  • This study is concerned with the thermo-biscoplastic finite element analysis of hot tube extrusion through square dies with a mandrel. The problem is treated as a non-steady state and the ALE description is used due to abruptly turning flow at the die aperture. Since the contact heat transfer coefficient and the friction factor are required in the analysis experiments are also carried out to determine the values, In order to apply ceramics to an extrusion die the study is focussed on under-standing the characteristics of the process. The simulated results provide the useful informations such as metal flow temperature distribution stress state etc. The elastic analysis of the dies is carried out to obtain the stress state of the ceramic dies.

  • PDF

A Study on Motion Constraint of Rotating Spindle in the Parallel Part at the Blocking Plate (평형부 내에서 회전 운동을 하는 스핀들의 운동 구속에 대한 연구)

  • Lim Jong Hyun;Han Geun Jo;Shim Jae Joon;Han Dong Seop;Lee Seong Wook;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.136-142
    • /
    • 2005
  • The function of main starting valve for marine engine is to supply cylinder with the air to start marine engine. But, if the spindle, one of the main starting valve components, doesn't rotate accurately at the designated air pressure, the marine engine may have some trouble in starting. So, to resolve the problem due to spindle .elation in the main starting valve, the blocking device (blocking plate, limit switch, etc.) is installed in the upper part of spindle to constrain the rotation. So, in this paper we introduced the rotation constraining ability of blocking plate prevent the spindle from mis-working in the main starting value of the marine engine.

Yoke Topology Optimization of the Bias Magnetic System in a Magnetostrictive Sensor (자기변형 센서 바이어스 자기계의 요크 위상최적설계)

  • Kim, Yoon-Young;Kim, Woo-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.923-929
    • /
    • 2004
  • A magnetostrictive sensor is a sensor measuring elastic waves. Because of its unique non-contact measurement feature, the sensor receives more attentions in recent years. These sensors have been mainly used to measure longitudinal and torsional waves in ferromagnetic waveguides, but there increases an interest in using the sensor for flexural wave measurement. Since the performance of the sensor is strongly influenced by the applied bias magnetic field distribution, the design of the bias magnetic system providing the desired magnetic field is critical. The motivation of this investigation is to design a bias magnetic system consisting of electromagnets and yokes and the specific objective is to formulate the design problem as a bias yoke topology optimization. For the formulation, we employ linear magnetic behavior and examine the optimized results for electromagnets located at various locations. After completing the design optimization, we fabricate the prototype of the proposed bias magnetic system, and test its performance through flexural wave measurements.

An analysis of the wrinkling initiation in sheet metal forming using bifurcation theory (분기좌굴이론을 이용한 박판성형공정에서의 주름발생해석)

  • 김종봉;양동렬;윤정환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.28-31
    • /
    • 1998
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of the wrinkles are influenced by many factors such as stress state, mechanical properites of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation for small deviation of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth, All the above mentioned factors are conveniently considered by finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. The finite element analysis is carried out using the continuum-based resultant shell elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing to column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

3D Finite Element-based Study on Skin-pass Rolling - Part I : Finite Element Analysis (3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part I : 유한요소해석)

  • Yoon, S.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Rolled products often have residual stresses or strip waves that are beyond the customer’s tolerance. To resolve this problem, skin-pass rolling is widely used during post-processing of such products. Because a short contact length compared to the strip width is a characteristic of skin-pass rolling, several numerical analyses have been previously conducted based on a two-dimensional approach. In the current study, a series of simulations was conducted using numerical analysis of three-dimensional elastic-plastic finite element method.

Hertzian 이동하중을 받는 피복된 재료의 탄소성 거동에 관한 유한요소해석

  • 김영종;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.596-602
    • /
    • 1995
  • In this paper, the rolling-sliding contact problem of a layered semi-infinite solid compressed by a rigid surface is solved by finite element method based on the elasto-plastic theory. The purpose of this paper is to present the standard that is needed the later design. For this analysis, the principal parameters are layer thickness. Young's modulus ratio of layer and substrate and friction coefficient. In particular, this paper is interested in effect that layer thickness have influence upon displacement and shear and tensile stress at interface. For the layered material, the layer and the substrate behave elastic and linear-strain hardening respectively. For law friction, a relatively thin layer reduce the undesired maximum tensial stress but, for high friction, act contrary to the case of low friction.

Application of L Integral to Interface Crack Problems (계면균열 문제에 대한 L적분의 응용)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 1986
  • An interface of a circular arc formed by two isotropic, homogeneous elastic materials is investigated. It is shown that L integral satisfies the conservation law for the interface if it is perfectly bonded, in frictionless contact or separated such as in a crack with the origin of the coordinate system being located at the center of the circular arc. The property of path independence of the L integral is applied to an interfacial crack problem, to obtain the stress intensity factors, where the interfacial crack is located along the arc of the circular inclusion embedded in infinite matrix. It is assumed here that the contact zone exist as in the model proposed by Comninou, thus removing the overlapping of the materials along the interface. Another example is shown for case of a circular interfacial crack in the matrix of finite size, where the stress intensity factors are determined by computing a value of the L integral numerically along the path far from the crack tip.

Determination of the Vlasov foundation parameters -quadratic variation of elasticity modulus- using FE analysis

  • Celik, Mecit;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.619-637
    • /
    • 2005
  • The objective of this research was to determine the Vlasov soil parameters for quadratically varying elasticity modulus $E_s$(z) of the compressible soil continuum and discuss the interaction affect between two close plates. Interaction problem carried on for uniformly distributed load carrying plates. Plate region was simulated by Kirchhoff plate theory based (mixed or displacement type) 2D elements and the foundation continuum was simulated by displacement type 2D elements. At the contact region, plate and foundation elements were geometrically coupled with each other. In this study the necessary formulas for the Vlasov parameters were derived when Young's modulus of the soil continuum was varying as a quadratic function of z-coordinate through the depth of the foundation. In the examples, first the elements and the iterative FE algorithm was verified and later the results of quadratic variation of $E_s$(z) were compared with the previous examples in order to discuss the general behavior. As a final example two plates close to each other resting on elastic foundation were handled to see their interaction influences on the Vlasov foundation parameters. Original examples were solved using both mixed and displacement type plate elements in order to confirm the results.

Fluid flow profile in the "orthotropic plate+compressible viscous fluid+rigid wall" system under the action of the moving load on the plate

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-309
    • /
    • 2020
  • The paper studies the fluid flow profile contained between the orthotropic plate and rigid wall under the action of the moving load on the plate and main attention is focused on the fluid velocity profile in the load moving direction. It is assumed that the plate material is orthotropic one and the fluid is viscous and barotropic compressible. The plane-strain state in the plate and the plane flow of the fluid is considered. The motion of the plate is described by utilizing the exact equations of elastodynamics for anisotropic bodies, however, the flow of the fluid by utilizing the linearized Navier-Stokes equations. For the solution of the corresponding boundary value problem, the moving coordinate system associated with the moving load is introduced, after which the exponential Fourier transformation is employed with respect to the coordinate which indicates the distance of the material points from the moving load. The exact analytical expressions for the Fourier transforms of the sought values are obtained, the originals of which are determined numerically. Presented numerical results and their analyses are focused on the question of how the moving load acting on the face plane of the plate which is not in the contact with the fluid can cause the fluid flow and what type profile has this flow along the thickness direction of the strip filled by the fluid and, finally, how this profile changes ahead and behind with the distance of the moving load.

Development of New Device to Improve Sucess Rate of Maze Procedure with Radiofrequency Energy (고주파에너지를 이용한 미로술식의 성적향상을 위한 새로운 기구의 개발)

  • 박남희;유양기;이재원
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.467-473
    • /
    • 2004
  • Background: The sinus conversion rate after the maze procedure in chronic atrial fibrillation using radiofrequency energy is lower than with either conventional 'cut and saw' technique or cryothermia. The creation of incomplete transmural lesions due to poor tissue-catheter contact is thought to be the main cause. To address this problem, the current study was aimed to evaluate the effectiveness of a specially constructed compression device designed to enhance tissue catheter contact during unipolar radiofrequency catheter ablation. Material and Method: Circum-ferential right auricular epicardial lesions were created with a linear radiofrequency catheter in 10 anesthetized pigs. A device specially designed to increase contact by compression of the catheter to the atrial wall was used in 5 pigs (study group). This device was not used in the control group (5 pigs). Conduction block across the right auricular lesion was assessed by pacing, and the transmurality of the lesions were confirmed by microscopic examination. Result: Conduction block was observed in a total of 8 pigs; 5 in study group and 3 in control group. Transmural injury was confirmed microscopically by the accumulation of acute inflammatory cells and loss of elastic fibers in the endocardium. In two pigs with failed conduction block, microscopic examination of the endocardium appeared normal. Conclusion: Failed radiofrequency ablation is strongly related to non-transmural energy delivery. The specially constructed compression device in the current study was successful in creating firm tissue-catheter contact and thereby generating transmural lesions during unipolar radiofrequency ablation.