• Title/Summary/Keyword: Ekman Number

Search Result 24, Processing Time 0.025 seconds

A Study on the Spin-up Flow in a Rectangular Container by Using Ekman Pumping Models (Ekman 분출 모델에 의한 직사각형 용기 내의 스핀업 유동 연구)

  • Choe, Yun-Hwan;Park, Jun-Gwan;Seo, Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.680-687
    • /
    • 2001
  • In this study, spin-up flows in a rectangular container are analysed both numerically and experimentally. In the numerical computation, we use two Ekman pumping models, the classical leading order and the first order. We also compared our results with those obtained for the case without a pumping model. Effect of two parameters, Reynolds number and the Rossby number on the flow evolution is studied. The first order and the leading order Ekman pumping models are in good agreement with the experimental result compared with the non-Ekman pumping model. Attention is given to the merging of two cyclonic vortices.

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

Flow Near a Rotating Disk with Surface Roughness (표면조도를 갖는 회전판 주위의 유동)

  • Park, Jun-Sang;Yoon, Myung-Sup;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.634-639
    • /
    • 2003
  • It has been studied the flow near a rotating disk with surface topography. The system Ekman number is assumed very small, i.e., $E[{\equiv}\frac{\nu}{{\Omega}^{\ast}L^{\ast2}}]<<1$ in which $L^{\ast}$ denotes a disk radius, ${\nu}$ kinematic viscosity of the fluid and ${\Omega}^{\ast}$ angular velocity of the basic state. Disk surface has a sinusoidal topographic variation along radial coordinate, i.e., $z={\delta}cos(2{\pi}{\omega}r)$, where ${\delta}$ and ${\omega}$ are, respectively, nondimensional amplitude and wave number of the disk surface. Analytic solutions, being useful over the parametric ranges of ${\delta}{\sim}O$( $E^{1/2}$ ) and ${\omega}{\leq}O$ ( $E^{1/2}$ ), are secured in a series-function form of Fourier-Bessel type. An asymptotic behavior, when $E{\rightarrow}0$, is clarified as : for a disk with surface roughness, in contrast to the case of a flat disk, the azimuthal velocity increases in magnitude, together with the thickening boundary layer. The radial velocity, however, decreases in magnitude as the amplitude of surface waviness increases. Consequently, the overall Ekman pumping at the edge of the boundary layer remains unchanged, maintaining the constant value equal to that of the flat disk.

  • PDF

Spin-up for stratified fluid in a cylinder with time-dependent rotation rate (시간적으로 변하는 각속도를 가지는 실린더 내부의 비균질 유체의 스핀업)

  • Kim, K.S.;Hyun, J.M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.323-326
    • /
    • 2006
  • Numerical solutions for spin-up problem of a thermally stratified fluid in a cylinder with an insulating sidewall and time-dependent rotation rate are presented. Detailed results are given for aspect ratio of O(1), fixed Ekman number $10-^{4}$, Rossby number 0.05 and Prandtl number O(1). Angular velocity of a cylinder wall changes with following formula, $\Omega_f=\Omega_i+\Delta\Omega[1-\exp(-t/t_c)]$. Here, this $t_c$, value, which is very significant in present study, represents that how fast/slow the angular velocity of the cylinder wall reaches final angular velocity. The normalized azimuthal velocity and meridional flow plots for several tc value which cover ranges of the stratification parameter S(1 ~ 10) are presented. The role of viscous-diffusion and Coriolis term in present study is examined by diagnostic analysis of the azimuthal velocity equation.

  • PDF

Energy transport analysis for the Taylor-Proudman column in la rapidly-rotating compressible fluid (압축성 회전 유동에서의 Taylor-Proudman 기둥의 에너지 전달에 관한 해석)

  • Park Jun Sang;Hyun Jae Min
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.329-332
    • /
    • 2002
  • A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. A detailed consideration is given to the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy contents, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy content.

  • PDF

Spin-up in a Cylinder with a Time-Dependent Rotation Rate (시간에 따라 변화는 회전 각속도를 가지는 원통용기내의 스핀업)

  • Kim, Kyung-Seok;Kwak, Ho-Sang;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.456-462
    • /
    • 2001
  • Comprehensive numerical computations are made of a homogenous spin-up in a cylindrical cavity with a time-dependent rotation rate. Numerical solutions are acquired to the governing axisymmetric cylindrical Navier-Stokes equation. A rotation rate formula is ${\Omega}_f={\Omega}_i+{\Delta}{\Omega}(1-{\exp}(-t/t_c))$. If $t_c$ is large, it implies that a rotation change rate is small. The Ekman number, E, is set to $10^{-4}$ and the aspect ratio, R/H, fixed to I. For a linear spin-up(${\epsilon}<<$), the major contributor to spin-up in the interior is not viscous-diffusion term but inviscid term, especially Coriolis term, though $t_c$ is very large. The viscous-diffusion term only works near sidewall. But for spin-up from rest, when $t_c$ is very large, viscous-diffusion term affects interior area as well as sidewall, initially. So azimuthal velocity of interior for large $t_c$ appears faster than that of interior for relatively small $t_c$. However, the viscous-diffusion term of interior decreases as time increases. Instead, inviscid term appears in the interior.

  • PDF

Taylor-Proudman Column Flows in a Compressible Rotating Fluid (압축성 회전 유동에서의 비점성 Taylor-Proudman column 유동)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.27-32
    • /
    • 2001
  • A study has been made of the condition to maintaining Taylor-Proudman column flows in a compressible rotating fluid, which is driven by small mechanical and/or thermal perturbations imposing on the container wall in the basic state of isothermal rigid body rotation. The Rossby and system Ekman numbers are assumed to be very small. The Taylor-Proudman column flow can be produced when energy parameter, e, becomes constant on the whole flow region. Energy balance concept, related to energy parameter, and its physical interpretation are given with comprehensive discussions.

  • PDF

Gas Flow in a Rapidly Rotating Pipe with Azimuthal-Varying Thermal Wall Condition (회전방향 온도변화를 갖는 매우 빠르게 회전하는 파이프 내의 기체유동)

  • Park, Jun-Sang;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.628-633
    • /
    • 2003
  • An analysis on the steady-state has been made of flow of a compressible fluid rapidly-rotating in a pipe. The flow is induced by an small arbitrary azimuthally-varying thermal forcing added on the basic state of rigid body isothermal rotation. The system Ekman number is assumed to be very small value. Analytic solutions have been obtained for axisymmetric and non-axisymmetric types, in which the axisymmetric solution comes from the azimuthally-averaged wall boundary condition and the non-axisymmetric solution from fluctuating wall boundary condition.

  • PDF

Geostrophic Flows in a Container with a Vertical Plate (수직격판이 있는 용기 내의 지균류)

  • Choi, Yoon-Hwan;Suh, Yong-Kweon
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.124-131
    • /
    • 1999
  • In this paper, we show the numerical and experimental results of two-dimensional fluid motions inside a rectangular container with a vertical plate subjected to a background rotation added by a rotational oscillation. In the PIV experiment we apply a new algorithm, NTSS, to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it showed good agreement with the experimental results at low ${\epsilon}$ number.

  • PDF

Study on Fluid Flow in a Rectangular Container Subjected to a Background Rotation with a Rotational Oscillation Using PIV System (PIV를 이용한 바탕회전하에서 회전요동하는 직사각형 용기 내의 유동해석)

  • Suh, Yong-Kweon;Choi, Yoon-Hwan;Kim, Sung-Kyun;Lee, Du-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.845-851
    • /
    • 2000
  • In this paper, we show the numerical and the experimental results of two-dimensional fluid motions inside a rectangular container subjected to a background rotation added by a rotational oscillation. In the PlY experiment we apply a new algorithm, new three step search(NTSS), to the velocity calculation. In the numerical computation, the linear Ekman-pumping model was used to take the bottom friction effect into account. It was found that it well produces the experimental results at low e number.