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Large eddy simulation of turbulent boundary layer effects on

stratified fluids in a rotating conical container.
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ABSTRACT: We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid
dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic
balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The
model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall
turbulent action may become intense enough to homogenize completely the density structure within the boundary layer. in the direction

perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundray layer flow

to persist for a long period.

1. Introduction

A clarifier is an effective means to separate particles from the
waste stream, and is one of the typical equipment of offshore
platforms used for the first stage separation (or removal) of the
slurry particles from the untreated sea water. Filtering and
chemical treatment are with necessary preliminary process
required to obtain demineralized water which is then used for
many purposes during the platform operations. The clarifier is a
sort of large cylinder-type container with an agitator at its center
which rotates at low speed. The bottom wall is usually up-sloped
away from the center, so that heavier slurry particles or fluids
can shde into the center of the clarifier by gravity force. For the
treatment of about 1,000 ton/hour of sea water, the typical size
of the clarifier is about 20m in radius and 3.5m in height. The
rotation speed of the agitator usually does not exceed 10 ~ 30
rpm.

Since the heavier slurry particles are to be settled down and
trapped near the bottom of the clarifier, the bottom boundary
layer plays an important role for the radial movement of the
slurry particles. For rotating fluids, the radial transport due to the
joint effect of viscosity and rotation is called Ekman transport.
The amplitude of the Ekman transport depends on the rotation
speed and kinematic viscosity of the fluid. The physical
mechanism of the Ekman transport has been known for almost a
century (Ekman, 1905). However, if the fluid is stratified and the
bottom wall is sloped, which is exactly the case for the clarifier,
the cross-slope Ekman transport introduces a density anomaly
into the boundary layer. Due to this density anomaly near the
wall, buoyancy is created which counterbalances the cross-slope
flow motion. The buoyancy continues to built up until the

Ekman boundary layer collapses creating a slippery boundary
layer near the sloping wall. This complicated dynamics was first
brought up and explained by Phillips et al., (1986), and it is
sometimes called "arrested Ekman layer problem". Thorpe
(1987) obtained a linear steady state solution of the arrested
Ekman boundary layer problem. His solution is very unique in
which the interior flow is not an external condition that can be
imposed, but rather a part of the solution, since only a particular
set of interior flow can be allowed to have a steady state solution.
The physics of this peculiar solution is associated with the fact
that the density anomaly induced by the Ekman transport must
be dissipated or diffused away from the boundary layer, for a
steady solution to exist. Therefore, in order to maintain the
balance between the density anomaly dissipation and the
buoyancy induced by the Ekman transport, the interior flow
(which determines the strength of the Ekman transport) must be
a function of the density diffusion coefficient.

MacCready and Rhines (1991) investigated the time dependent
behavior of the arrested Ekman boundary layer problem. They
found that, in the initial stage the Ekman transport induces
strong buoyancy near the wall, and this buoyancy creates
adverse pressure gradient which in turn decelerates the along-
slope flow. Therefore, the Ekman transport must be also
diminished. This deceleration process continues until the system
achieves the Thorpe's steady state solution. The final state of
their solution strongly depended on the density diffusion
coefficient. If the density diffusion was not allowed, the final
steady solution was a complete destruction of the interior flow
field.

It is to be noted, however, there were a few restrictions in the
arrested Ekman boundary layer models of Thorpe (1987) and



MacCready and Rhines (1991). For instance, the system of
equations used was linearized version of the Navier-Stokes
equations, the velocity component perpendicular to the bottom
wall was assumed to vanish everywhere, and most importantly
any flow variations in along-slope or cross-slope directions were
not allowed. In this study we revisit the arrested Ekman
boundary layer problem without imposing any restrictions, using
fully non-linear numerical model. The main objective of this
study is to find out whether the dynamic balance explained by
MacCready and Rhines (1991) is valid for high Reynolds
number. The model solution indicates that for high Reynolds
number and low Richardson number flows, the density anomaly
diffusion by near-wall turbulent action becomes so intense that
the density structure within the boundary layer can be
homogenized completely in the direction perpendicular to the
sloping wall. Therefore, the buoyancy effects become negligible
within the boundary layer allowing finite amplitude along-slope
and cross-slope boundary layer flows.

In the following chapters, the physical problem is formulated,
and the numerical solution is presented followed by a discussion
on the physical implication of the model solution for boundary
layer problems of rotating fluids.

2. Formulation of Problem

2.1 Governing Equations

The governing equations for the arrested Ekman boundary layer
problem are obtained from equations of momentum, continuity
and density for incompressible fluids in rotating reference frame.
The Boussinesq approximation is used to account for the
buoyancy effect. The equations are
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where the nomenclature is conventional: # and v are the cross-
slope and along-slope velocities, p is the density, p is the
pressure, v is the kinematic viscosity, k is the density diffusion
coefficient, is the acceleration of gravity and €2 is the angular
velocity of the reference frame. The density p is separated into
three parts such that
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To simplify the calculation procedure, the coordinate system is
rotated by the angle of the wall slope & as shown in Figure 1,
then the equations (2.1) - (2.3) become:
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where the subscript r represents the variables in rotated
coordinate, f{=2¢2) is the Coriolis parameter and N is the
buoyancy frequency given by
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The pressure p is decomposed into two parts
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Figure 1. This figure shows (a) the rotated coordinate system
and (b) initial stable stratification (p; < p, < pj).

2.2 Boundary Conditions
The bottom boundary is no-slip and insulated:
u, =v,=w,=0 atz =0, (2.13)
1 2
9P 8N osd) at z, =0, (2.14)
&, p,



the top boundary is free-slip:

u, =0 as z, >, (2.15)
v, =V, as z, >, (2.16)
p'=0as z, >, 2.17)

and the side boundaries are all periodic.

2.3 Dimensionless numbers

There are three important dimensionless numbers which are
relevant to the current problem. They are Reynolds number,
Richardson number and Prandtl number, which can be written as
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respectively, where & is the laminar Ekman length given by
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It is to be noted that Pr is not an important parameter for
turbulent flows since eddy diffusions (of momentum and
density) are much intense than the molecular diffusions in the
case of turbulent flows.

2.4 Numerical Method

The governing equations (2.5) - (2.8) are integrated using the
FLUENT, a commercial CFD code developed by FLUENT INC
(FLUENT, 1998). The finite volume method (FVM) is used for
discretization of the governing equations, and mixed implicit -
explicit scheme is used for time marching. A complete
description on the numerical scheme of the FLUENT can be
found in FLUENT manual (FLUENT, 1998).

The model domain size is 0.2mx0.2mx0.2m in, x,, y, and z,
directions, respectively. In order to resolve large eddies, if there
is any, the grid size is set equal to the Ekman length in x, and z,
directions. In vertical directions, there are 3 grid points within
the Ekman length near the bottom wall, and the grid size
increases away from the wall with the weighting factor of 1.2.

2.5 Large eddy simulation (LES) model

The Renormalization group (RNG) theory is used in order to
account for the subgrid-scale eddy viscosity (Yakhot et al.,
1989). The RNG procedure gives an effective subgrid viscosity

My, given by

2
H, K, /
g = Hl+HESE-O)', (222)
u
where
U, :((1"'8;/1/3)2 2§U§U ] (2.23)
and H(z,) is the Heaviside functions:
Hiz)=| 70 2.24)
zZ )= .
0, x, <07

and V'is the volume of the computational cell. §U in 2.23 is the

rate of strain tensor defined by
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The theory gives C,,,=0.157 and (=100. A noble point of the
RNG model compared with other LES models is in its ability to
recover molecular viscosity in low Reynolds number regions.

This fact makes the RNG scheme an excellent choice for the
modeling the turbulent flows of their behavior not well

investigated.

3. Results

3.1 Preliminary Experiment (case-1)

For ncutrally stratified fluids, the Ekman layer becomes
unstable at Re=55 (class A), and the secondary instability occurs
at Re=110 (class B) (Greenspan, 1990). There are numerous
literatures on the linear instability, transition to turbulence, and
fully turbulent Ekman boundary layer solutions. However, for
the arrested Ekman boundary layer problem, no theoretical
analysis is available to determine in what conditions the flow
becomes unstable and create large eddics, if any. The closest
study relevant to the current problem may be the direct
numerical simulation study of the stably stratified Ekman layer
by Coleman et al., (1992). However, they considered only the
flat bottom case, and since their focus was on the atmospheric
boundary layer, the density value was fixed at the bottom, and
the Prandtl number was that of the air which is an order of
magnitude smaller than that of the water. Under these
circumstances, they observed that, at the Reynolds number of
400, the Richardson number of 0.001 was near the maximum
that allowed the flow to remain turbulent, and at this condition,
the large coherent structures were not found. For neutrally
stratified case, Coleman et al., (1990) extrapolated their DNS
results for higher Reynolds number following the turbulent
Ekman boundary layer theory developed by Csanady (1967).



Previous to Coleman et al, (1992), Mason and Derbyshire
(1990) studied the stably stratified Ekman boundary layer with a
LES model and obtained very similar results. Their success of
the LES model partly supports our choice of the LES model for
the simulation of the arrested Ekman boundary layer.

The model conditions for the preliminary simulation (case-1)
are as follows: the reference density p, is 1000kg/m’, the
buoyancy frequency N is 0.45s”, the slope angle & is 10°, the
kinematic viscosity vis 10 m%/s the thermal diffusivity & is 10”7
m’’s , the geostrophic velocity ¥, is —lm/s , the Coriolis
parameter fis ls”. The Ekman length &, is, using equation 2.21,
0.001425m, the Reynolds number Re is 1425, the Richardson
number Ri is 4.06x107, and the Prandtl number Pr is 10.

Figiure 2 shows the time history of the cross-slope transport at
the center of the model domain. It is to be noted that the inertial
oscillation emerges at the initial stage of the flow development,
and it decays within several inertial periods 27/, The arrested
Ekman theories suggest that the cross-slope transport must
decay exponentially to near zero, over a time scale of the shut-

down time [ cos(8)/(Nsin(@))® (MacCready and Rhines,

1991). The shut-down time is the time it takes for the buoyancy
effect to become important and the arrested Ekman boundary
layer emerges. In this particular case, the shut-down time is
about 29 seconds. However, as can be seen from the figure 2,
after several periods of inertial oscillation the cross-slope
transport becomes nearly constant. It is not obvious from this
figure, but the cross-slope transport decays continuously at very
slow rate.

Figure 3 illustrates the model solutions after 180 seconds of the
model integration. The cross-slope velocity is relatively large,
and the density is nearly homogenized within the boundary layer
due to intense turbulent activities. It is to be noted that the wall
boundary layer length is much thicker than that of the laminar
Ekman boundary layer. More precisely, the turbulent boundary
length & can be estimated by u”// from dimensional analysis
(Coleman et al., 1990). In this case, & is 0.05m, which is about
35 times thicker than the laminar Ekman boundary layer length,
indicating that turbulent motion plays much more significant

role.

3.2 Influence of Re and Ri (case-2)

In order to understand the effect of different Reynolds number
and Richardson number, the model simulation is carried out with
much lower Reynolds number of about 142.5 and higher
Richardson number of 4.06x10°. Figure 4 shows the time
history of the non-dimensional spatial mean frictional velocity
u'/V, at the bottom wall. Unlike the high Reynolds number case,
the solution decays rather rapidly.

0.060 —
0.050 —|
- ]
- B
= o
R YT E
3 ]
g 0.030 —
g ]
é‘. ’
3 0020 —
g ]
5 .
0010
0'000 |\HlHIIIHl!\Ill\‘IHIIHII]HHTHH'IIHHHI
0 40 80 120 160 200
time (s)

Figure 2. The time history of the cross-slope transport at the
center of the model domain (case-1).
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Figure 3. The model solutions (a) cross-slope velocity, (b)
along-slope velocity and (c) density after 180 seconds of the
model integration (case-1).

Figure 5, 6 and 7 shows the time variation of the model
solutions #,, v, and p,, respectively. The density anomaly slowly
penetrates into the interior, which in turn creates adverse
pressure gradient. Then the along-slope flow is decelerated by
which the cross-slope flow is also decelerated. This flow pattern
can be well explained by the arrested Ekman boundary layer
theory of MacCready and Rhines (1991). It is, therefore,
expected that the solution decays until it reaches the Thorpe's
solution, if the system is integrated further in time.
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Figure 4. The time history of the non-dimensional spatial mean
frictional velocity u”/V at the bottom wall (case-2).

010 gy To Ja T

0.08 A I

I[
0.06 E . -
004 - : s
00z e - -

4, - .
R -
0.00 - . e 1 =
- M T AR T T T 1 T

z,(m)

001 0 001002001 0 001002001 0 0.010020.01 0 0.01002
u_(mn/s) u (m/s) u, (m/s) u, (m/s)

Figure 5. The time variation of the cross-slope velocity at (a)
T=10sec (b) T=20sec, (¢) T=50sec and (d) T=70sec, (case-2).
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Figure 6. The time variation of the along-slope velocity at (a)
T=10sec (b) T=20sec, (¢) T=50sec and (d) 7=70sec, (case-2)
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Figure 7. The time variation of the density at (a) 7=10sec (b)
T=20sec, (¢) T=50sec and (d) 7=70sec, (case-2).

4. Discussion

A series of large eddy simulations (LES) of the arrested Ekman
boundary layer has been conducted. The major finding is that
the behavior of the arrested Ekman boundary layer solution
depends critically on both the Reynolds number and Richardson
number. For the high Reynolds number and low Richardson
number case, the wall boundary layer was characterized by fully
turbulent small scale motions, and the boundary layer flow
system achieved a finite amplitude near-equilibrium state. This
model result is appears to be different from the conventional
arrested Ekman boundary layer theory (MacCready and Rhines,
1991). The resolution is that, in this particular case, the necar-
wall density anomaly induced by cross-slope Ekman transport
was diffused quickly within the boundary layer by intense
turbulent motions. Since the density was nearly homogenized
within the boundary layer, the buoyancy played no roles there.
Therefore, the cross-slope Ekman transport (as well as the
along-slope transport) persisted for a long period. The buoyancy
played an important role only at the top of the boundary layer,
by which the along-slope flow was decelerated continuously
there. Although it is not obvious from the analyzed model
results, we suspect that the turbulent density dissipation also
played a non-negligible role for slowing down the density
anomaly diffusion into the interior. This argument is in line with
the eddy diffusion model of Garrett (1990). He derived a steady
state solution for a given arbitrary interior velocity by choosing
appropriate eddy diffusion coefficients. His steady state solution
describes the dynamic balance between the continuous creation
of buoyancy by cross-slope Ekman transport and its destruction
by eddy dissipation process.

For low Reynolds number and high Richardson number case,
the flow system decayed continuously, in accordance with the
arrested Ekman boundary layer theory. We argue that, in this
case, the turbulence density diffusion effect was not intense



enough to homogenize the density structure within the boundary
layer. Therefore, the buoyancy played a significant role there,
created gradient
counterbalancing the boundary layer flows. The result is

which in tumn adverse  pressure
continuous decay of the boundary layer solution.

The upshot is that it is the relative magnitude of the Reynolds
number and Richardson number that determines whether the
flow system may or may not follow the arrested Ekman
boundary layer theory. More precisely, if the turbulent intensity
(which is determined by Reynolds number) is strong enough to
homogenize completely the density structure (which is related to
Richardson number) within the boundary layer, the flow system
may achieve a near-equilibrium solution. Otherwise, the arrested
Ekman boundary layer mechanism emerges, therefore the flow
field decays continuously until it reaches the steady state
restricted by Thorpe's solution.

The implication of these model results is important for the
understanding of the bottom boundary layer of rotating
equipment such as the clarifier. However, with proper choices of
Re and Ri, same principles can be applied to the planetary
boundary layers of atmosphere and oceans.
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