• Title/Summary/Keyword: Eigen-function expansion

Search Result 13, Processing Time 0.021 seconds

Electromagnetic Penetration into an Annular Aperture in a Thick Conductor

  • Lee Haeng-Seon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.146-151
    • /
    • 2005
  • Electromagnetic penetration into an annular aperture in a thick conducting plane is investigated with the integral transform and eigen-function expansion method. The solution is analytic and is represented in rapidly-convergent series which is amenable to numerical analysis. Numerical computations shows that apertures with narrow annular gap have sharp transmit power peaks in frequency response.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Scattering of Oblique Waves by an Inanite Flexible Membrane Breakwater (유연막 방파제에 의한 경사파의 산란)

  • 조일형;홍석원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.219-226
    • /
    • 1995
  • The wave interaction with flexible membrane such as PVC and PU fabrics is studied to prove its applicability to portable breakwaters. To analyze the wave deformation due to the flexible membrane. eigen-function expansion method is employed. The fluid domain is seperated into two regions. The velocity potential in each regions and the deformation of membrane are coupled by the body boundary conditions. Herein the deformation of membrane is obtained by solving the membrane equation. As a numerical example, transmission and reflection coefficients according to the change of several design parameters such as tensile force. mooring line stiffness and membrane height are investigated. It is found that the efficiency of flexible membrane breakwater is significantly affected by these design parameters. The angle of incident wave is an important role to the performance of breakwater. Finally we conclude that flexible membrane can be used to engineering material for the future breakwaters.

  • PDF

Wave-blocking Efficiency of a Horizontal Porous Flexible Membrane

  • Cho, Il-Hyoung
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • The interaction of monochromatic incident waves with a submerged horizontal porous membrane is investigated in the context of two-dimensional linear hydro-elastic theory. It is assumed that the membrane is made of material with very fine pores so that the normal velocity of the fluid passing through the porous membrane is linearly proportional to the pressure difference between two sides of the membrane (e.g. Darcy's law). Using the Eigen-function expansion method, the wave-blocking performance of a submerged horizontal porous membrane is tested with various membrane tensions, porosities, lengths, and submerged depths. It is found that an optimal combination of design parameters exists for given water depth and wave characteristics.

  • PDF

Development of Wharf in Fishing Port with Tranquility Using the Arrays of Upright Perforated Plates ( 1 ) (직립 소파판을 이용한 어항 정온화 접안시설 개발 ( 1 ))

  • Kim, Hyeon-Ju;Cho, Il-Hyeong;Choi, Hak-Sun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.286-293
    • /
    • 1996
  • This paper established the analytical model of sea surface oscilation of simple type fishing port with vertical wave absorbor. This model is composed by MAEM(Matched Asymptotic Expansion Method) for wave amplification in fishing port and EEM(Eigen - function Expansion Method) for wave absorbing characteristics against vertical perforated plates. Dimensionless porosity by adopting Darcy's law was introduced to evaluate wave absorbing characteristics of the perforated structure. Using the model, the efficiency of the vertical perforated plates was studied for fishing port tranqulity with number of plates, array method and plate intervals. Optimal design and arrangement of perforated plates can be applied to develop multipurpose fishing ports and villages.

  • PDF

Study on Two-Dimensional Laminar Flow through a Finned Channel (박막이 부착된 채널내의 2차원 층류유동장에 대한 연구)

  • Yoon Seok-Hyun;Jeong Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.53-59
    • /
    • 2002
  • A two-dimensional laminar flow through a channel with a pair of symmetric vertical fins is investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The Stokes flow for this channel is first investigated analytically and then the other laminar flows by numerical method. For analytic method, the method of eigen function expansion and collocation method are employed. In numerical solution for laminar flows, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, the streamline patterns are shown and the additional pressure drop due to the attached fins and the force exerted on the fin are calculated. It is clear that the force depends on the length of fins and Reynolds number. When the Reynolds number exceeds a critical value, the flow becomes asymmetric. This critical Reynolds number Re/sub c/ depends on the length of the fins.

Study on Two-Dimensional Laminar Flow Through a Finned Channel (박막이 부착된 채널내의 2차원 층류 유동장에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.545-550
    • /
    • 2001
  • A two-dimensional laminar flow through a channel, on which a couple of symmetric vertical fins are attached, is investigated. The stokes flow for this channel flow is investigated analytically and laminar flow numerically. For analytic solution, the method of eigen function expansion and collocation method are employed. For numerical solution, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, streamline patterns are shown and the pressure drop due to the attached fins is calculated, which depends on the length of fins and Reynolds number. While $Re, streamline pattern is symmetric, a pair of additional asymmetric solutions appear for $Re>Re_c$, where the critical Reynolds number $Re_c$ depends on the length of the fin.

  • PDF

Trapped Water Waves due to Depth and Current Discontinuities (해저단애 지형 및 흐름에 의한 억류파낭)

  • 서승남;전기천
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1992
  • Eigen Function Expansion Method(EFEM) and Plane Wave Approximation are employed to study the propagation of linear water waves over trenches. The properties of trapped waves due to depth and ambient current discontinuities and the effect of evanescent modes on wave propagations are investigated. Special attention is paid to the trapped waves, and not only 3-D plots but also B-D plots of wave propagation are presented.

  • PDF

flow analysis in Micro Channel with a Couple of Fins (박막이 부착된 마이크로 채널 내의 유동해석)

  • Jeong Jae-Tack
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.228-233
    • /
    • 2005
  • Two-dimensional Stokes flows through a micro channel with a couple of symmetric vertical fins are investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The slip boundary conditions are applied to take account of the Knudsen number effects. For the analysis, the method of eigen function expansion and collocation method are employed. By the results, the streamline patterns and pressure distributions are shown and the force exerted on the fin and the excess pressure drop due to the fins are determined as functions of the length of the fin and Knudsen number. It may be conjectured that the force and the excess pressure drop are almost independent of the Knudsen number.

  • PDF

On the Behavior of Membrane Breakwaters in Waves (파랑중 막 구조 방파제의 거동 특성)

  • Cho, I.H.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1994
  • The wave interaction with flexible membrane such as PVC and fabrics is studied to prove its applicability to portable breakwaters. To obtain the wave exciting force acting on flexible membrane, eigen-function expansion method is employed. The effect of flexible is involved in body boundary condition in which x-directional displacement of membrane is obtained by solving the linear membrane equation. Displacement of membrane is assumed to be small compared to wavelength, therefore the tensile force of membrane remains constant. As the numerical examples, transmission and reflection coefficients according to the change of tensile forces are investigated. The hydrodynamic force on membrane, the dynamic tension in the mooring lines and the vertical displacement profile of membrane are also calculated. It is suggested that the flexible membrane can be used to engineering material for the future coastal/ocean applications.

  • PDF