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ABSTRACT : The interaction of monochromatic incident waves with a submerged horizontal porous membrane is investigated in the context of
two-dimensional linear hydro-elastic theory. It is assumed that the membrane is made of material with very fine pores so that the normal
velocity of the fluid passing through the porous membrane is linearly proportional fo the pressure difference between two sides of the
membrane (e.g. Darcy’s law). Using the Eigen-function expansion method, the wave-blocking performance of a submerged horizontal porous
membrane is tested with various membrane tensions, porosities, lengths, and submerged depths. It is found that an optimal combination of design

parameters exists for given water depth and wave characteristics.

1. Introduction

Various floating breakwaters have been proposed for the
small recreational harbors.

However, most floating wave barriers are known to be

protection of marinas and
ineffective, unless its size is comparable to 1/4t01/2 wave
length, which results in high construction cost. During the
past decade, there has been a gradual increase of interest in
the use of flexible membrane as an effective, inexpensive
wave barrier. In particular, the membrane is light and
rapidly deployable; thus, it may be an ideal candidate as a
portable temporary breakwater.

The performance of a vertical-screen membrane breakwater
was investigated by Thomson et al. (1992), Aoki et al. (1994),
Kim and Kee (1996), and Cho et al .(1997). Using the linear
wave theory and membrane-motion equation, Kim and Kee
(1996) and Cho et al. (1997) showed that almost complete
reflecion was possible, despite appreciable sinusoidal
motions of the membrane, which tend to generate only
exponentially-decaying, local (evanescent) waves in the lee
side. The theory was compared, favorably, with 2-D tank
experiments (Kim and Kee, 1996).

Some major problems associated with the use of flexible
vertical screen are the expected large wave loading and
possible blockage of currents or surface vessels. In view of
this, the feasibility of an alternative horizontal membrane, as
a wave barrier, was investigated by Cho and Kim (1998).

Since the horizontal membrane does not directly block incoming
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waves, the diffracted and radiated waves, including various
elastic modes, have to be properly tuned in order to be an
effective wave barrier. It is shown in Cho and Kim (1998)
that the overall wave-blocking efficiency can be greatly
improved by allowing membrane flexibility compared to
rigid plates.

The performance of a horizontal flexible membrane can be
further enhanced by adding a proper porosity to the
membrane surface. The resulting wave loads can also be
significantly reduced by membrane porosity. Isaacson (1998),
for example, developed a numerical model to describe the
wave interaction with a permeable thin vertical barrier, and
found that the porous effect reduces not only the wave
also the
permeable barrier. Yu and Chwang (1994) applied the

amplitude, but hydrodynamic force on the
boundary element method to investigate the reflection and
transmission of surface waves by a horizontally submerged
porous plate. Wu et al. (1998) investigated wave reflection
using a vertical wall with a submerged horizontal porous
plate. It was found that, with proper porosity the plate can
significantly reduce not only the wave height above the
plate, but also the reflection coefficient. Recently, Cho and
Kim (2000) solved the interaction problem of incident waves
with a horizontal porous flexible membrane using the
eigenfuction expansion method and the boundary element
method, under the assumption of linear hydro-elastic theory.

In this paper, analytical solutions are obtained by an
eigenfunction expansion approach to investigate the effect of
membrane porosity on the wave-blocking efficiency of a
horizontal flexible membrane.

It is assumed that the membrane is made of material with
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very fine pores, so that the normal velocity of the fluid
passing through the
proportional to the pressure difference between the two

porous membrane is linearly

sides of the membrane. The same porosity model was also
used by Chwang and Yu (1994), Cho and Kim (2000), and
Wu et al(1998). It is found that the enhancement of
wave-blocking efficiency by viscous dissipation through
pores is more pronounced when the porous membrane is
located closer to the free surface.

2. Mathematical Formulation

We explore the interaction of a horizontal porous
membrane wave barrier with monochromatic incident waves.
Cartesian axes are chosen with the x-axis along the mean
free surface and the y-axis pointing vertically upwards. The
water depth is denoted by % and the submergence depth of
the membrane by 4. It is assumed that both ends of the
membrane are fixed at x=+q, and a uniform tension 7T
is applied on the membrane in the x direction (see Fig.1).

It is also assumed that the fluid is ideal, except for the
pore region, and the wave and membrane motions are
small, so that linear potential theory can be used. The fluid
particle velocity can then be described by the gradient of a
velocity potential @(x, v, ).

Assuming harmonic motion of frequency w, the velocity
potential can be written as @(x, v, ) =Re{¢(x, y)e ~'“/}.

The wave number 4,

satisfies the dispersion relation,

w?= gk tanhk k. Similarly, the vertical displacement of the

membrane can be written as:

E(x, ) = Re{&(x)e ~ '} @

where &(x) is the complex displacement of the membrane.

The velocity potential ¢ satisfies the Laplace equation

2 2
07 4 0% _(in the fluid
o0x oy

with the following boundary conditions:

0¢/dy—vp=0 (v=0%/g) on y=0 ©)
d
—(5%:0 on y=—h (4)
lim (-32 <it,$)=0  at far field o)
_g%ly:—dioz_iwé‘i_io(¢ly:—d—0_¢|y=—d+0)

on —a<x<a ©)

where ¢ is the real positive porous-effect parameter

obw
) with  d,=porosity coefficient, p=fluid density,

( =
and p=dynamic viscosity of the fluid. It is assumed in (6)

that the membrane is made of material with very fine
pores, so that the normal velocity of the fluid passing
through the porous membrane is linearly proportional to the
pressure difference between the two sides of the membrane
(Chwang and Yu, 1994; Wu et al.,, 1998).

The limiting case 5,20 corresponds to the impermeable

membrane and b, means that the membrane is
infinitely porous equivalent to no obstruction in the fluid
domain.

On the membrane surface, the following dynamic

condition has to be satisfied (Cho and Kim, 1998):
dPE | ra BOQ D gy (D _
L5+ Re=— 24D (1= d—0)~ ¢ ? (x,0-a+ D]

in which A=V m/T with T and m being the membrane
tension and mass per unit length, respectively. Here, it is
assumed that the initial tension is large, so that the effect of
dynamic tension can be neglected. The complex displacement
of the membrane can be expanded in terms of a set of
natural modes of the membrane:

&(x)= ;0 C;fz(x) ®)

where {;, is the unknown complex modal amplitude,
corresponding to the /th mode. The modal functions and
eigenvalues of the membrane satisfying the membrane
equation (7) and the end condition are given by (e.g. Cho
and Kim, 1998)

2(0=D+1lx
2

AS
£3(2)= cos ;x, A=

f[(x) = A
FHx)=sin A;x

=iz (1=1,2,3,...) 0O

where the superscripts S and A denote symmetric and
asymmetric modes about x=0, respectively. The modal
functions given in equation (9) are orthogonal to each other
in the interval [—a, a] :

’ [aizj
JLrmmoas ., ®

Including all the flexible membrane modes, the complex
potential ¢(x, y) can be expressed in the form:

#(x, y) = ¢dp(x, )+ ZO b u(x, 3,

$p(x, )= ¢ (x, 3+ ds(x,) (1)
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where #p is the diffraction potential and @5, $x denote
the scattering and radiation potential, respectively. The
incident wave potential ¢; with wave amplitude A=1 is
given by :

_ 4g coshk (y+h) .

L%, 3)= @ cosh ki ¢ (12

3. Analytic Solutions

The fluid domain is divided into two regions, as shown
in Figl. Region (I) is defined by x< —a,— /#<y<0, and
region (II) by |x<a, — k<{3<0.

The diffraction potential satisfies the govering equation
(2), boundary conditions (3)-(5), and (6) with £=(. In the
following, the symmetry of the fluid and membrane is used
by splitting ¢p into symmetric and asymmetric parts.

¢ p(x,3) = ¢73(x, ) + $5(x, ) (13a)
where
S
$3(—x, ) =¢3(x,9), a;;D =0 on x=0
$(—x, ) =—¢5(x, 9, $5=0 on x=0 (13b)

The symmetric diffraction potential in each fluid region

can be written as follows:
pHV=— —Zf {-%— e P L)+ ;zloaie Fulrta e ()
(14)

R 2505008k 5,5 £4,(9) (15)

where k]():—z.kl, and the eigenflmctions fln(y) are given by

coshk (y+h) _
| coshkik n=0
Fi9)= cosk ,(yv+h)
cosk,h nzl (16)

The eigenvalues are the solutions of the following equations:

2
{kltanhklh=ﬂg— n=0_

2
klntanklnh:——a;; n>1 a7
The eigenfunctions /f2.,(3) and eigenvalues %, satisfy the

following eigenvalue-problem :

9
d
FEinal
—%—uf=0 on y=0
d d .
_d§|y=—d+0:_d‘§Iy:*d—Ozlo(ﬂy=—d—0_ﬂy=—d+0)
(18)
—Zﬁ =0 on y=—h
for the upper complex plane of x» and (<o{c. The
complex eigenvalues Ry, are the roots of the following
equation :
xsinhx(kh— d)(vcoshxd — x sinh xd)
— ¢o(vcoshxh— xsinhxh) =0 (19)

There exist an infinite number of discrete complex roots
x=x,Fix; The real and imaginary parts of the left-hand
side of (19) must be zero. The nonlinear equation (19) is
solved using a Newton-Raphson iteration method. The initial
values were determined from the case without porosity. The

resulting eigenfunctions f2,(3) are

f2n(y)
sinh &y, (h— d)(k,, coshk,,y+ vsinh &,,y) — d<y<()
(vcosh ky,d— ky,sinh ky,d) cosh by, (y+ B) — h<y < — d(ZO)

By using (20), it can be shown that the eigenfunctions are
orthogonal to each another. If ¢—(, the solutions of the
above eigenfunction problem become identical to those of
impermeable membrane (Cho and Kim, 1998). As ¢—co, the
porous membrane becomes completely permeable, and the
incident wave propagates without any obstruction.

The unknown coefficients @, b5(n=0,1,2,....) in (14)
and (15) are determined by invoking the continuity of
potentials and horizontal velocities on x=—a. The final
matrix equation can then be obtained as follows:

w S S
@+ Z kf;;:()n af =% et (1- klf"‘;n) m=0,

s _Fu s 1 koo Fiog
a,~+ ;0 kmN(l) a=—7e 7, ) m=1,2,3...
(1)

where

’ _[NY m=n
[ A Sy = (N 7= )

< ko tank,,aC,, C

FS, = — S "2 Tont Tam Zuk

mk MZO N;Z) (23)
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0
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2) —
ffhfz,z(y)fzm(y)dy= { (J)V( m (24)

m¥*n
By solving the above algebraic equation, the unknown
constants @, in region (I) can be determined. The other

unknown constants b, in region (II) can be determined in a
similar manner:

% " C o+ ;Oaicﬂk
cosky,a NP

S = >
bn n 0, (25)

Similarly, the asymmetric diffraction potential in each fluid
region can be written as

pHV=— _Zf {—%‘ e L+ ngoa‘ze Fnletae (3))
(26)
AQ_ _ 18
D ;L: sink 5% f5,(3) @)
The unknown coefficients @4, 52 (#=0,1,2,....) are
determined after applying the matching conditions on :
= F 1 Fi
A 0% A__ L kya 0 —
ay +;0 klONél) ay 2 e ( km]\/'(()l) 1) m
= F4 . F4
am+;0klmN’§1)af —%—ek‘“ﬁll—) m=1,2,3
28)
where
© ko, cotks,,aC,, C
A 2n 2n nm > nk
Eon ;:30 N& (29)

The other unknown constants
obtained from

in region (II) can be

e %ek“’acno-l- ,;Oaﬁan

= =
" sink,,a N n=0, (30)

On the other hand, the radiation potential satisfies the
following condition on the porous membrane:

agZSIR | —
dy y=-~d=0

—iwf{x) +io ¢1R|y:—d—0 - ¢1R|y:—d+0)(31)

Like the diffraction problem, the radiation potentials can
be represented by the sum of homogeneous and particular
solutions. The symmetric radiation potentials in each region
can be written as follows:
¢51‘1(? D_ _

_ig S S ket
@ nz'otZ e £ 32

= "5 2 bhcosk o1 f 5, (0 + 2 TiP(x,9)

(33)
Similarly, the asymmetric radiation potentials in each region
are given in the form:

7 o ko(xt+a)
¢1;11§1>=-——f nZ‘:. a’?ne g afln(y) (34)

¢ RD=— _g { Z bosink o,xf 5. () + —= wi?e(Z)(x 1
(35)

S(2) grA(Z) in region (H)

The particular solutions Y™,
satisfying the inhomogeneous membrane boundary condition
are given by Cho and Kim(2000).

Finally, the algebraic equation for the unknown constants

in region (I) can be derived after applying the matching

conditions on x=—q as follows:
w FSA XS.A
S, A L mk S A__ mi _
@im +;0 klm]\/'(”}) ai klmN(rr}) m=0,1,2,... (36)
where
w (0 AT —a,y)
Xml_ 1 f7 = Ix flm(y)dy
0T4P(—a,y)
xh="2 f A Sy (37)

The other unknown &5, and &%, coefficients can be
determined from

S _ W 0 S(2¢ _
o Wy [ PR C e 0l
cos ky,alN,
- ; atyC ot -2 f TE—a, 9y, () dy
b= @ n=0
sin kz,,aNn
(38)

Substituting (% ¥) = ¢p(x, ) + /2 $b (%, )

£(x) ZJZ §2) into (7) yields

2

Zl ¢ — Tm waj(x) — (0 }=pp (x) 39)
where

pi(x) =ipwl ¢ P(x, — d—0)— $P(x, — d+0)]

(0 =ipal $2(x, —d—0)— ¢ 2(x, — d+0)] (40)
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Multiplying the above equation by f{%) and integrating
over the membrane, we obtain
jZlI{Kii_wz(Mz7+,‘Z\zi) _Cd‘b\ij Ej:F,', i=1,2,.... (41)

where
a  df{x)
Ky=— | 7255

M;= jdmf,»(x)f,-(x) dx

a,= Réfﬁ fﬂDjR(x)fz-(x)dx}

D= L [ pa( () ax)
a 42)
Fi= [ b0 fix)ax
The symbols K, M;
(modal) stiffness matrix, mass matrix, and force wvector,
and B; are the
added-mass and radiation-damping matrix. Truncating the

and F; represent the generalized

—

respectively, and a; generalized

series of (41) at the appropriate term M, we can solve for

the unknown complex amplitudes £, corresponding to each
mode (Newman, 1994).

Finally, the reflection and transmission coefficients can be
determined from

R,=|[a;+af)+ leé’l(a‘f,?—k ap)le ™™,

T,=l[aj—as)+ ;?,(a?R—ai}e)]ek“’al, 43)

Fig. 2 Comparison between analytic and experimental results
(2a/h=1.1,d/h=0.182)

4, Results and Discussions

In order to validate the analytic results developed, the
analytic
(60, 7>0) are compared with the experimental results
conducted in the 2D wave tank. The model is made of a
thin steel plate. The length and submergence depth of the
plate are 60cm and 10.12cm, respectively. The water depth

results for impermeable horizontal plate

is fixed at 55cm. The measured reflecion coefficients
generally follow the trend of computed curves within the
entire range of frequencies.

Reflection and transmission coefficients for impermeable
horizontal plates with various b are shown in Fig3. The

porosity parameter b used in the figures is defined as

b= 276 _ 2mowby

follows : ky Ryt

, where a large b represents

highly porous membrane and b=( means that the
membrane is impermeable. Both reflection and transmission
curves with b$=5.0 have low values within the entire
range of frequencies. The rate of R; decrease is larger

when 1<%;<3; the transmission coefficient show the large
rate of decrease in the high frequencies region.

Fig. 3 Reflection coefficient and transmission coefficient of a

submerged horizontal impermeable membrane as function

of wavenumber k% for d/h=0.2,a/h=0.5
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Fig. 4 shows transmission coefficients against dimensionless

wave number for b=2.0 and various membrane tersions
(non-dirrensional tension=0.05, 0.1, 0.2, ). In the following, the
membrane mass per unit length is 1 kg/m The transmission
coefficient increases as the tension decreases.
In Fig. 5 and 6, the reflection and transmission coefficients
for 5=2.0 and non-dimensional tension=0.1 are plotted for
various submergence depths (0.1, 0.2, 0.3) and membrane
lengths (0.4, 0.5, 0.6). A shallower submergence depth makes
the reflection coefficient decrease.

0.2 4 —— d/h=01
d/h=0.2
- — d/h=0.3

Fig. 5 Reflection coefficient and transmission coefficient of a
submerged horizontal porous membrane as function of

submerged depth d/h and wavenumber 4% for
alh=0.5, T/ pgh*=0.1 and 6=2.0

—— Tlipgh?=0.05
0.8 . Tipgh®=0.1
T —— Tipgh?=0.2
— - Tipgh®=infinity
0.6 W
T, N
NG R
0.4 AN
,\ . / -
A
\
0.2 \\/
0.0 —
[ 1 2 3 4 5 6 7 8

Fig. 4 Transmission coefficient of a submerged horizontal
porous membrane as function of non-dimensional tension
T/ ogh® and wavenumber %2 for d/h=0.1,
alh=0.5 and 5=2.0

A transmission coefficient with d/2=0.2 shows the

lower value in the region of 2.2<k2<4.7, but transmission
coefficient with d/A=0.1 has minimum values in the
region of k2>4.7. Tt is expected that a longer porous
membrane reduces more wave energy, due to the viscous
dissipation. The reflection coefficient follows the expected
trend, but the transmission coefficient shows the contrary
pattern. It is caused by the waves-induced membrane
motion. We next consider the effects of membrane porosity
on the wave blocking performance. In the case of porous
membranes, there exists energy dissipation through pores
due to fluid viscosity; thus, the energy conservation is not
satisfied. Fig. 7ab shows the reflection and transmission
coefficients of a submerged membrane (d=0.2/4) porous
membrane for various & values. Wave reflection is more
influenced by membrane porosity. When #1£>4.5, wave
while for

2.5¢k11<4.5 the transmission coefficient increases with .

transmission  decreases as b  increases,
The effects of membrane porosity can be positive or
negative, depending on wave conditions and the given
design parameters. In other words, the overall efficiency can
be worse at certain wave conditions when using a porous

membrane.

a/h=0.4

- alh=0.5
—— a/h=0.6

=Y ah=0.4
v < ath=0.5

0.2

0.0

Reflection coefficient and Transmission coefficient of a
submerged horizontal porous membrane as function of

kih for

Fig. 6

length of membrane ¢/4 and wavenumber
d/h=0.1,T/ogh*=0.1 and 5=2.0
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1-R-T

©

Fig. 7 Reflection coefficient, transmission coefficient and energy

loss coefficient of a submerged horizontal porous

membrane as function of wavenumber k2 for

dih=0.2,a/h=0.5, T/ogh*=0.1

In the case of zero porosity (or an impermeable

membrane), the energy relation R5+T2=1 is satisfied,
while for porous cases, there exists energy dissipation, as
can be seen in Fig. 7c. The energy-loss coefficient increases

with & within entire frequencies range.

5. Conclusions

The interaction of monochromatic incident waves with a
horizontal porous flexible membrane was investigated in the
context of two-dimensional linear hydro-elastic theory. The
performance of submerged porous horizontal membrane
wave barriers was tested with various membrane tensions,
lengths, and submergence depths. Since the horizontal
membrane does not directly block incoming waves, the
transmitted and motion-induced waves need to be properly
cancelled to be an effective wave barrier.

On the other hand, the membrane porosity significantly
increased energy dissipation by fluid viscosity, and thus
reduced transmitted waves. It is seen that an optimal
combination of design parameters exists for given water
depths and wave characteristics and it can be determined

from a parametric study.
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