• Title/Summary/Keyword: Eigen behavior

Search Result 52, Processing Time 0.02 seconds

A Theoretical Investigation on the Instability Phenomena of Induction Motor Drive System (유도전동기구동계(系)의 불안정현상에 관한 이론적고찰)

  • Baek, Soo-Hyun;Kim, Pill-Soo;Song, Sung-Joon;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.7-10
    • /
    • 1990
  • In this paper the instability analysis of Inverter fed Induction motor drive system is performed by calculate the eigen value of the linearised equation which describe the behavior of the Induction motor. Inverter fed Induction motor drive system may become unstable at low speeds(frequencies) even though balanced, sinusoidal voltage are applied. Effect for the change of machine parameter and Inverter delay time are simulated by digital computer.

  • PDF

Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes

  • Khadimallah, Mohamed Amine;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.621-632
    • /
    • 2020
  • This research deals with the study of vibrational behavior of armchair and zigzag single-walled carbon nanotubes invoking extended Love shell theory. The effects of different physical and material parameters on the fundamental frequencies are investigated. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. To discretize the governing equation in eigen-value form, wave propagation approach is developed. Complex exponential functions have been used and the axial model depends on boundary condition that has been described at the edges of carbon nanotubes to calculate the axial modal dependence. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes and current results shows a good stability with comparison of other studies.

Analysis of the Parameter Convergence Rate for an Adaptive Identifier (적응추정자에 대한 파라메터 수렴속도의 해석)

  • Kim, Sung-Duck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.2
    • /
    • pp.127-136
    • /
    • 1989
  • This paper describes the parameter convergence properties of an adaptive system to identify a single-input single-output plant model. It is demonstrated that, by using power spectrum analysis, the persistency of excitation (PE) condition in order to guarantee the exponential stability of the adaptive control system can be transformed into the positive definite behavior for the auto-correlation function matrix of adaptive signal. The existence of parameter nominal values can be analyzed by this condition and the convergence rates of parameter are determined by examining the auto-correlation function. We may use the sufficient richness (SR) of input spectrum instead of the PE condition to analyze the parameter boundedness. It can be shown that the eigen values of the auto-correlation function are always related with adaptive gain, input amplitude and positions or numbers of input spectra. In each case, the variation of parameter convergence rate can be also verified.

  • PDF

On forced and free vibrations of cutout squared beams

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.643-655
    • /
    • 2019
  • Perforation and cutouts of structures are compulsory in some modern applications such as in heat exchangers, nuclear power plants, filtration and microeletromicanical system (MEMS). This perforation complicates dynamic analyses of these structures. Thus, this work tends to introduce semi-analytical model capable of investigating the dynamic performance of perforated beam structure under free and forced conditions, for the first time. Closed forms for the equivalent geometrical and material characteristics of the regular square perforated beam regular square, are presented. The governing dynamical equation of motion is derived based on Euler-Bernoulli kinematic displacement. Closed forms for resonant frequencies, corresponding Eigen-mode functions and forced vibration time responses are derived. The proposed analytical procedure is proved and compared with both analytical and numerical analyses and good agreement is noticed. Parametric studies are conducted to illustrate effects of filling ratio and the number of holes on the free vibration characteristic, and forced vibration response of perforated beams. The obtained results are supportive in mechanical design of large devices and small systems (MEMS) based on perforated structure.

Effect of dimensionless nonlocal parameter: Vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Alghamdi, Sami;Bhutto, Javed Khan;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, frequency vibrations of double-walled carbon nanotubes (CNTs) has been investigated based upon nonlocal elastic theory. The inference of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. An innovational nonlocal model to examine the scale effect on vibrational behavior of armchair, zigzag and chiral of double-walled CNTs. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of dimensionless nonlocal parameter has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Validity assessment of aspect ratios based on Timoshenko-beam model: Structural design

  • Emad Ghandourah;Muzamal Hussain;Mohamed A. Khadimallah;Mashhour Alazwari;Mohamed R. Ali;Mohammed A. Hefni
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, Timoshenko-beam model is developed for the vibration of double carbon nanotubes. The resulting frequencies are gained for axial wave mode and length-to-diameter ratios. The natural frequency becomes more prominent for lower length-to-diameter ratios and diminished for higher ratios. The converse behavior is observed for axial wave mode with clamped-clamped and clamped-free boundary conditions. The frequencies of clamped-free are lower than that of clamped-clamped boundary condition. The eigen solution is obtained to extract the frequencies of double walled carbon nanotubes using Galerkin's method through axial deformation function. Computer softer MATLAB is used for formation of frequency values. The frequency data is compared with available literature and found to be in agreement.

On the Behavior of Membrane Breakwaters in Waves (파랑중 막 구조 방파제의 거동 특성)

  • Cho, I.H.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1994
  • The wave interaction with flexible membrane such as PVC and fabrics is studied to prove its applicability to portable breakwaters. To obtain the wave exciting force acting on flexible membrane, eigen-function expansion method is employed. The effect of flexible is involved in body boundary condition in which x-directional displacement of membrane is obtained by solving the linear membrane equation. Displacement of membrane is assumed to be small compared to wavelength, therefore the tensile force of membrane remains constant. As the numerical examples, transmission and reflection coefficients according to the change of tensile forces are investigated. The hydrodynamic force on membrane, the dynamic tension in the mooring lines and the vertical displacement profile of membrane are also calculated. It is suggested that the flexible membrane can be used to engineering material for the future coastal/ocean applications.

  • PDF

Experimental Study for Ultimate Behavior of Steel Cable Stayed Bridge Under Construction (실험을 통한 시공 중 강사장교의 극한거동 연구)

  • Lee, Kee Sei;Kim, Seung Jun;Choi, Jun Ho;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2012
  • The girders of cable stayed bridge are subjected to not only the bending moments but also additional compressive axial forces due to the horizontal components of cable forces. Because of these axial forces, the stiffness of girder can be decreased, and this problem should be considered especially for under-construction model rather than the full model. Korean domestic design specification suggests the linear elastic eigen value analysis for the stability problem of cable stayed bridges. However, this method cannot be applied to the under construction model because various geometric nonlinear characteristics cannot be considered. Therefore, in this study, 3 models which are assumed to be constructed by balanced cantilever will be considered experimentally and analytically to analyze the behavior of steel cable stayed bridges.

The Relationship between the Stage of Exercise Behavior Change and Physical Self-Concept and Self-Efficacy of Casino Security Employees (카지노 시큐리티 종사자의 운동변화단계에 따른 신체적 자기개념과 자기 효능감의 관계)

  • Chun, Yong-Tae;Oh, Jung-Il
    • Korean Security Journal
    • /
    • no.21
    • /
    • pp.95-120
    • /
    • 2009
  • This study was designed to investigate the relationship between the stages of exercise behavior change and physical self-concept and self-efficacy of security employees in hotel casinos. The sampling was drawn from employees at 8 casinos which had more than 30 employees. Participants were selected by convenience sampling method and they completed questionnaires about Physical Self-Concept and Self- Efficacy by self-administration method under supervision of trained researchers SPSS 16.0 (Statistical Package for the Social Science) was used for data analysis in the present study. Reliability and validity were examined for the present study. The principle component factor analysis and varimax rotation were used for the present study. Eigen value 1.0 was the criterion for selecting factors. Chi-square (X) 2 test was utilized for measuring the difference in gender and types of job duties at the stages of exercise behavior change. One-way ANOVA was employed to examine the relationship between the stages of exercise behavior change as an independent variable and physical self-concept and self-efficacy as dependent variables. The Scheffe method was used to determine mean differences of groups as a follow-up test. Multiple regression analysis was utilized to test the difference of physical self-concept as dependent variable and self-efficacy as independent variable. To verify hypothesis for the study, a statistical significance level of $\alpha$=.05 was used. The results were as follow: first, there were differences found for gender and types of job responsibilities in the stages of exercise behavior change. Secondly, as security employees progressed through the stages of exercise behavior change, their physical self-concept and self-efficacy improved. Finally, physical activity and body fat had significant main effects on self-efficacy.

  • PDF

Structure Borne Durability Design of a Vehicle Body Structure (차체구조의 구조기인 내구 설계)

  • 김효식;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.