• Title/Summary/Keyword: Eigen analysis

Search Result 319, Processing Time 0.026 seconds

A Study on the Effectiveness of Eigen Modes by Modal Analysis and Application of Approximate Eigen Modes for Continuum (모드중첩법에 의한 고유모드의 유효성 및 연속체 근사 고유모드의 적용에 관한 연구)

  • 김진기;문창훈;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.270-278
    • /
    • 1997
  • The purpose of this paper is to evaluate the effectiveness of eigen modes by modal analysis and the application of approximate eigen modes for continuum. This study proposes the appropriate selection technique of eigen modes by modal analysis and the method for the reasonable survey of post-buckling path. And the buckling characteristics of a latticed dome is studied by the application of these approximate eigen modes which have sufficient accuracy and praticallity for response analysis in symmetric and anti-symmetric state of continuous shell. To prove the effectiveness of eigen modes and application of approximate eigen modes for continuum, these results are compared with those of direct method.

  • PDF

Design Sensitivity Analysis of Eigen Problem Using NASTRAN (NASTRAN을 이용한 고유치 문제의 설계 민감도 해석)

  • 윤광수;이태희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.508-512
    • /
    • 1997
  • Design sensitivity analysis of Eigen Problem give systematic design improvement information for noise and vibration of a system. Based on reliable results form commercial FE code(UAI/NASTRAN), three computational procedures for design sensitivity analysis of eigen problem are suggested. Those methods are finite difference,design sensitivity analysis using external module and design sensitivity analysis running with NASTRAN. To verify the suggested methods, a numerical example is given and these results are compared with the results from UAI/NASTRAN eigen sensitivity option. We can conclude that design sensitivity coefficient of eigen proplems can be computed outside of the FE code as easy as inside of the FE code.

  • PDF

Accuracy Analysis of New Geopotential Model using GPS/Levelling Data (GPS/Levelling데이터를 사용한 새로운 지구중력장모델의 정확도 분석)

  • Yun Hong-Sic;Cho Jae-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.353-358
    • /
    • 2005
  • The purpose of this paper is to evaluate a new geopotential model, EIGEN-CG01C which had been developed from CHAMP and GRACE mission observations and surface gravity data. The accuracy analysis was conducted by comparing the geoidal heights computed from two types of geopotential models (i.e., EIGEN-CG01C and EGM96) with spirit leveled GPS bench mark. To this end, three hundred twenty GPS leveled bench marks are used as bases for the numerical investigation. From the analysis, it was possible to conclude that EIGEN-CG01C was more suitable to upgrade the KGEOID 98 since the results that the EGM96 was slightly biased.

A Note on Eigen Transformation of a Correlation-type Random Matrix

  • Kim, Kee-Young;Lee, Kwang-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.339-345
    • /
    • 1993
  • It is well known that distribution of functions of eigen values and vectors of a certain matrix plays an important role in multivariate analysis. This paper deals with the transformation of a correlation-type random matrix to its eigen values and vectors. Properties of the transformation are also considered. The results obtained are applied to express the joint distribution of eigen values and vectors of the correlation matrix when sample is taken from a m-variate spherical distribution.

  • PDF

Eigen-sensitivity Analysis of Augmented System State Matrix (전력계통의 확대상태행렬 고유치감도 해석)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.749-753
    • /
    • 1996
  • This paper presents a new method for first and second order eigen-sensitivity analysis of system matrix in augmented form. Eigen-sensitivity analysis provides invaluable informations in power system planning and operation. However, conventional eigen-sensitivity analysis methods, which need all the eigenvalues and eigenvectors, can not be applicable to large scale power systems due to large computer memory and computing time required. In the proposed method, all sensitivity computations for a mode are carried out using the augmented system matrix and its own eigenvalue and right & left eigenvectors. In other words sensitivity analysis for a mode does not need informations on the other eigenvalues and eigenvectors and sparsity technique can be fully utilized. Thus compuations can be done very efficiently with moderate computer memory and computing time even for large power systems. The proposed algorithm is tested for one machine infinite bus system.

  • PDF

Simultaneous identification of stiffness and damping based on derivatives of eigen-parameters

  • Lia, H.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.687-702
    • /
    • 2015
  • A method based on derivatives of eigen-parameters is presented for damage detection in discrete systems with dampers. The damage is simulated by decrease on the stiffness coefficient and increase of the damping coefficient. In the forward analysis, the derivatives of eigen-parameters are derived for the discrete system. In the inverse analysis, a derivative of eigen-parameters based model updating approach is used to identify damages in frequency domain. Two numerical examples are investigated to illustrate efficiency and accuracy of the proposed method. Studies in this paper indicate that the proposed method is efficient and robust for both single and multiple damages and is insensitive to measurement noise. And satisfactory identified results can be obtained from few numbers of iterations.

Gravity Potential Comparative Analysis around Korean Peninsula by EGM96 and EIGEN-CG01C Models (EGM96와 EIGEN-CG01C 모델에 의한 한반도 주변의 중력포텐셜 비교분석)

  • Yu, Sang-Hoon;Kim, Chang-Hwan;Min, Kyung-Duck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.261-266
    • /
    • 2005
  • According to development of satellite geodesy, gravity potential models which have high accuracy and resolution were released. Using the EIGEN-CG01C model based on low orbit satellite data such as CHAMP and GRACE and the EGM96 model, geoid and gravity anomaly were calculated and compared. The study area is located at $123^{\circ}{\sim}132^{\circ}$ E, $33^{\circ}{\sim}43^{\circ}$ including Korea. Comparing two models, very high correlation more than 0.90 in geoid and gravity anomaly was observed, but in amplitude analysis the EIGEN-CG01C model have higher amplitude in high frequency area. Gravity anomaly calculated with both models shows a little difference in North Korea and some coast area of the Yellow sea. Through power spectrum analysis, residual anomaly that can be used in large scale structure or underground resources survey was calculated.

  • PDF

Study of Finite Element Eigen Analysis of Beam With Arbitrary Cross Section (임의 단면형상을 갖는 보의 고유치 해석에 관한 연구)

  • Park Keun-Man;Cho Jin-Rae;Jung Weui-Bong;Bai Soo-Ryong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.764-771
    • /
    • 2006
  • The use of 3-D finite elements for the eigen analysis of beam-like structures with arbitrary section shape may not be practical in certain cases, from the aspect of CPU time. In this connection, this paper presents a systematic algorithm for decomposing an arbitrary section into finite number of basic ones and computing essential sectional quantities required for the eigen analysis using the beam theory. The numerical accuracy of the proposed method is assesed from the comparison with the 3-D finite . element method.

  • PDF

Contingency Selection Using Eigen-Sensitivity Analysis for Voltage Stability. (고유치감도 해석에 의한 전압안정도의 상정사고 선택)

  • Song, S.G.;Nam, H.K.;Shim, K.S.;Moon, Y.H.;Choi, H.K.;NamKung, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.66-68
    • /
    • 2000
  • The Eigen analysis in large power system provides much useful information that is not got in nose curve. The branch participation factor is not quantitative information and is an indirect method calculating incremental change in branch reactive loss. But the Eigen sensitivity analysis to each mode is direct and provides of quantitative information but this method because of needing much time is used in large power system. In this paper the Hessenberg method is used to obtaining dominant eignvalues and corresponding eigenvectors of Jacobian matrix. Ranking the critical contingencies is done by computing the Eigen sensitivity of each dominant eignvalues for changes of each line. The proposed algorithm is tested on the New England 30-bus system and KEPCO system in the year of 2000, which comprises of 791-bus and 2500-branches.

  • PDF

Analysis of Nonlinear Forced Vibrations by Ritz Vectors for a Stepped Beam (Ritz벡터를 이용한 변단면 보의 비선형 강제진동 해석)

  • 심재수;박명균
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.99-105
    • /
    • 1993
  • A Stepped beam with immovable ends under forced vibrations with large amplitude is investigated by using the finite element method and the Ritz vectors. Unlike the Eigen vectors, the Ritz vectors are generated by a simple recurrence relation. Moreover the Ritz vectors yield much faster convergence with respect to the number of vectors used than the use of Eigen vectors. The computer program is developed for nonlinear analysis using Ritz vectors instead of Eigen vectors and numerical examples are analysed for deflections and natural frequencies of stepped beam under various support conditions. Results show that the proposed method is valid and efficient.

  • PDF