• Title/Summary/Keyword: Egress Time

Search Result 84, Processing Time 0.024 seconds

The Improvement of Evacuation Performance for Discount-Store in Underground (할인점 지하매장의 피난성능 개선에 관한 연구)

  • 김영일;윤명오;김종훈;김운형
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims to improve the Evacuation Performance o( the I)inc()unto-store in underground that is rapidly new shopping store in Korea. In this paper, The architectural properties of the floor plan and section was reviewed with egress focus, occupant load density of the Discount-store was surveyed and the procedure and method of performance based egress design for this occupancy was analysed with SIMULEX model and calculation method. As a result of modeling, more longer available safe egress time (ASET) is expected than required safe egress time (RSET)in underground discount-store. In order to improve the Evacuation Performance for this type occupancy, egress capacity including escape stair, aisle width, escape door is calculated with based on occupant load density and review of shopping cart's structure and size and maximum escape capacity of the cash counter.

  • PDF

Fire Growth of Wood Cribs and Available Safe Egress Time (목재연소시의 실내화재성상과 안전대피시간)

  • 정길순;태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.72-77
    • /
    • 1993
  • Available Safe Egress Time(ASET) is the time available for occupants to evacuate safely In compartment fire, and It depends on the time of fire detection and hazardous conditions. The purpose of thls study Is to provide an analytical basis and experimental data for estimating the fire growth in compartments and the available safe egress time, and to compare the experimental data with those proposed equations. As a result, hazard order Is poison to CO, descent of smoke layer, poison to $CO_2$, burn to hot smoke layer, and lack of $O_2$, ASET is lengthened in this order. Also, The more fire load is increased, the more ASET is shorted.

  • PDF

A Study on the Evacuation of People used the evacuation model on Fire in Shopping Mall (피난 모델을 이용한 대형할인매장의 화재시 피난에 관한 연구)

  • 이수경;이상준
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • For life safety design of shopping mall, we selected a shopping mall, and calculated the evacuation time of means of egress. It is calculated by two kind of evacuation method. One is the computer simulation model, EXODUS. The other is Japan's method. Study way is a model structure study, selecting real shopping mall and setting scenario, calculating the evacuating time. result of study, evaluation time is very high. Therefore we confirmed that the building of means of egress is not fit to evacuation more the capacity of setting population.

  • PDF

REQUIREMENTS FOR AUTOMATED CODE CHECKING FOR FIRE RESISTANCE AND EGRESS RULE USING BIM

  • Jiyong Jeong;Ghang Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.316-322
    • /
    • 2009
  • The more repetitive, complex and objective the work, the more effective automation is. Code checking is an example of this. Checking building codes through a thick set of drawings is error-prone and time-consuming. In order to overcome this problem, several organizations have initiated efforts to automate building-code checking. Initiated study mainly focused on checking codes for invalidation, required size and crash, and then area of checkable codes have been expanding. But, it has not been considered for codes regarding anti-disaster/egress, which is also issued these days. This study is about how to automatically check codes for anti-disaster and egress based on Korea building codes. The codes can be categorized as five sections: egress way, material/capability, principals of evacuation, evacuation stairway and fire protection partition. To check automatically, there are problems, such as expression of codes for egress and limitation of extractable information from the BIM model. This paper shows what problems exist and assignments to be resolved. Also, current developing processes are presented, and suggestions are made about the direction for the work that remains.

  • PDF

A case study of fire risk analysis for train coach without gangway doors (철도차량 화재위험도 평가 사례 분석)

  • Lee, Duck-Hee;Kim, Chi-Hun;Kim, Jeong-Hun;Park, Won-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2232-2241
    • /
    • 2010
  • A case study of fire risk analysis was conducted for train coach which has no gangway doors between coaches. The analysis boundary was limited to the time of outgoing from the coaches for it was train fire risk analysis. ASET(available safe egress time) and RSET(required safe egress time) methodology was used for calculating the dead. 4 liters of gasoline and cable fire at the electric cabinet and the standard fire of EN 45545 were selected for the fire sources. The fire were considered to be occurred at 3 different locations in the car. The train had 3 cases of driving scenarios. The result of all event was summarized for remained tunnel and station egress step.

  • PDF

Evaluation on Fire Available Safe Egress Time of Commercial Buildings based on Artificial Neural Network (인공신경망 기반 상업용 건축물의 화재 피난허용시간 평가)

  • Darkhanbat, Khaliunaa;Heo, Inwook;Choi, Seung-Ho;Kim, Jae-Hyun;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.111-120
    • /
    • 2021
  • When a fire occurs in a commercial building, the evacuation route is complicated and the direction of smoke and flame is similar to that of the egress route of occupants, resulting in many casualties. Performance-based evacuation design for buildings is essential to minimize human casualties. In order to apply the performance-based evacuation design to buildings, it requires a complex fire simulation for each building, demanding a large amount of time and manpower. In order to supplement this, it would be very useful to develop an Available Safe Egress Time (ASET) prediction model that can rationally derive the ASET without performing a fire simulation. In this study, the correlations between fire temperature with visibility and toxic gas concentration were investigated through a fire simulation on a commercial building, from which databases for the training of artificial neural networks (ANN) were created. Based on this, an ANN model that can predict the available safe egress time was developed. In order to examine whether the proposed ANN model can be applied to other commercial buildings, it was applied to another commercial building, and the proposed model was found to estimate the available safe egress time of the commercial building very accurately.

An Application of Evacuation Model for Rail Passenger Car (철도차량에 대한 피난모델 적용)

  • Kim, Jong-Hoon;Kim, Woon-Hyung;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.123-128
    • /
    • 2007
  • To predict the fire and smoke hazards of rail car with a evacuation model is essential for achieving life safety of all passengers in the event of fire. Currently, more than 30 different evacuation models are available and expected increasing demand in high population density areas as a metro train station. This paper includes brief history of evacuation models and review some key factors of design egress scenario, these are pre-movement time, egress route, location of fire, overturned carriage, and configuration of rail car. Applying the egress model for rail passenger car, users need to confirm the model's ability of physiological, psychological responses effecting to pre-movement time of individual or crowd unit, representation of complexity of carriage layout, and evaluation of effects of smoke.

  • PDF

Quantitative Discomfort Evaluation for Car Ingress/Egress Motions (승용차 승하차 동작의 정량적인 불편도 평가 방법)

  • Choi, Nam-Chul;Shim, Ji-Sung;Kim, Jae-Ho;Lee, Sang-Muk;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.333-342
    • /
    • 2010
  • This paper describes a novel quantitative discomfort evaluation method based on motion data and its application to discomfort analysis of ingress/egress motions for cars. To develop the discomfort evaluation model, we introduced the discomfort regression curve and the range of motion for each degree-of-freedom of the joints of a whole human body. The maximum discomfort value for the joints at a specific time is selected to represent the discomfort value of the whole body at the time. The results of the experiments and questionnaires support the claim that our discomfort measure matches experimental subjective discomfort levels.

The Case Analysis through Fire Simulation FDS and Evacuation Simulation Pathfinder (화재 시뮬레이션 FDS와 피난시뮬레이션 Pathfinder 사례분석)

  • Kim, Jong Yoon;Jeon, Yong Han
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.6
    • /
    • pp.253-260
    • /
    • 2015
  • In this study, using the FDS as the fire simulation and evacuation simulations of the Pathfinder, set the main control room of the building to the fire point fire safety assessment studies were carried out. At first the quantitative result such as distribution of visibility as time passing, distribution of temperature, distribution of CO density produced results using fire-simulation and evacuation-simulation was carried out based on the result that produced the final safety evaluation result as being calculated of evacuation time. As the risk increased with the distribution of visibility at the result of fire-simulation, evacuation-simulation was carried out using the result. Finally the result was made 127.9 sec that everyone could evacuate. The numerical results are analyzed in case of the places in the building required safe egress time for safety a as the analysis to be no more than available safe egress time was analyzed to be secured. The results of this safety evaluation represent that more smooth evacuation safety performance can be secured by linking the event of fire firefighting equipment as a result of simulating the worst conditions.

  • PDF

Fire and Evacuation Analysis in Environmental Energy Facilities (환경에너지 시설내 화재 및 피난해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • In this study, a fire and evacuation inside an electronic equipment room in environmental energy facilities were conducted and evaluated using a numerical analysis method. In the fire simulation, the visual distance, temperature distribution, and CO concentration distribution were analyzed using FDS. Based on the results, the Pathfinder program, which is an evacuation simulation, was used to calculate the evacuation time of the occupants and derive an evacuation safety evaluation. As a result, the Available safe Egress time (ASET) of P-01 and P-05 was 203.3 and 398.6 s, respectively. For the Required safety Egress time (RSET) results, all evacuees were evacuated at all points and the safety of the evacuee was secured this simulation showed that the safety evaluation is based on the non - operation of the fire - fighting equipment to improve the safety, making it possible to secure better evacuation safety performance owing to the fire of other fire - fighting facilities.