• Title/Summary/Keyword: Efficient plastic design

Search Result 97, Processing Time 0.02 seconds

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

Plastic Analysis and Minimum Weight Design of Plane Frame Structures (평면(平面) 뼈대 구조물(構造物) 소성해석(塑性解析) 및 최소중량(最小重量) 설계(設計))

  • Lee, Dong Whan;Yang, Chang Hyun;Whang, Won Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.111-120
    • /
    • 1986
  • Steel frame structures are widely used in construction because of their efficient strength and rigidity and considered proper cases for design and analysis using concept of plastic behavior. The purpose of plastic analysis is to determine the collapse load of a structure when the plastic moments of its members are given, and optimal plastic design is to compute the plastic moments of the members that minimize total structural weight. In this paper, the plastic analysis and optimal design are performed by using the static approach and solved by the simplex method. From the result of the analysis the solutions by this study show more efficiency in calculations. Also, the structural weight solved by the simplex method in case of two story frame is proved more economical than the one using the elastic design around 24%.

  • PDF

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Sheet Offsetting Algorithms for Efficient Solid Modeling for Thin-Walled Parts (얇은 두께 솔리드의 효율적인 모델링을 위한 박판 옵셋 알고리즘 개발)

  • 김현수;이상헌
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.3
    • /
    • pp.242-254
    • /
    • 2000
  • This paper describes an efficient solid modeling method for thin-walled plastic or sheet metal parts, based on the non-manifold offsetting operations. Since the previous methods for modeling and converting a sheet into a solid have adopted the boundary representations for solid object as their topological framework, it is difficult to represent the exact adjacency relationship between topological entities of a sheet model and a mixture of wireframe and sheet models that can appear in the meantime of modeling procedure, and it is hard to implement topological operations for sheet modeling and transformation of a sheet into a solid. To solve these problems, we introduce a non-manifold B-rep and propose a sheet conversion method based on a non-manifold offset algorithm. Because the non-manifold offset aigorithm based on mathematical definitions results in an offset solid with tubular and spherical thickness-faces we modify it to generate the ruled or planar thickness-faces that are mostly shown in actual plastic or sheet metal parts. In addition, in order to accelerate the Boolean operations used the offset algorithm, we also develope an efficient face-face intersection algorithm using topological adjacency information.

  • PDF

Analysis of R/C frames considering cracking effect and plastic hinge formation

  • Kara, Ilker Fatih;Ashour, Ashraf F.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.669-681
    • /
    • 2017
  • The design of reinforced concrete buildings must satisfy the serviceability stiffness criteria in terms of maximum lateral deflections and inter story drift in order to prevent both structural and non-structural damages. Consideration of plastic hinge formation is also important to obtain accurate failure mechanism and ultimate strength of reinforced concrete frames. In the present study, an iterative procedure has been developed for the analysis of reinforced concrete frames with cracked elements and consideration of plastic hinge formation. The ACI and probability-based effective stiffness models are used for the effective moment of inertia of cracked members. Shear deformation effect is also considered, and the variation of shear stiffness due to cracking is evaluated by reduced shear stiffness models available in the literature. The analytical procedure has been demonstrated through the application to three reinforced concrete frame examples available in the literature. It has been shown that the iterative analytical procedure can provide accurate and efficient predictions of deflections and ultimate strength of the frames studied under lateral and vertical loads. The proposed procedure is also efficient from the viewpoint of computational time and convergence rate. The developed technique was able to accurately predict the locations and sequential development of plastic hinges in frames. The results also show that shear deformation can contribute significantly to frame deflections.

Seismic Performance of PC Moment Frame with Plastic Shear Hinge (소성전단힌지를 갖는 PC 모멘트 골조의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2015
  • Cyclic loading tests for the PC moment frame with plastic shear hinges were performed to evaluate the seismic performance. The plastic shear hinges consisted of two steel plates were installed at the mid-length of the beam to connect the PC frames. Three shear links are existed in each steel plate. The three shear links were designed using shear force corresponding to the shear capacity of 50%, 75%, and 100% of the beam shear capacity. The proposed connections showed an efficient energy dissipation capacity and good structural performance. As a result, it is reasonable to design the plastic shear hinges using design shear capacity less than 100% of the beam shear capacity.

Drift Control for Multistory Moment Frames under Lateral Loading

  • Grigorian, Carl E.;Grigorian, Mark
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.355-365
    • /
    • 2013
  • The paper reports results of recent studies on the effects of column support conditions on the lateral displacements of moment frames at incipient collapse. The article presents a number of exercises in the plastic theory of structures that lead to useful design formulae. It has been shown that Drift Shifting (DS) is caused due to differences in the stiffnesses of adjoining columns, and that changes in drift ratios are more pronounced at first level column joints in both fixed as well as pinned base frames. In well proportioned moment frames, DS in the upper levels could be minimized, even reduced to zero. It has been demonstrated that DS can be eliminated in properly designed fixed and grade beam supported (GBS) moment frames. Several examples, including symbolic P-delta effects, have been provided to demonstrate the validity and the applications of the proposed ideas to the design and drift control of moment frames. The proposed methodology is exact within the bounds of the theoretical assumptions and is well suited for preliminary design and teaching purposes.

An Overview on Performamce Control and Efficient Design of Lateral Resisting Moment Frames

  • Grigorian, Mark;Grigorian, Carl E.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.141-152
    • /
    • 2013
  • This paper presents a brief overview of the recently developed performance-control method of moment frame design subjected to monotonously increasing lateral loading. The final product of any elastic-plastic analysis is a nonlinear loaddisplacement diagram associated with a progressive failure mechanism, which may or may not be as desirable as expected. Analytically derived failure mechanisms may include such undesirable features as soft story failure, partial failure modes, overcollapse, etc. The problem is compounded if any kind of performance control, e.g., drift optimization, material savings or integrity assessment is also involved. However, there is no reason why the process can not be reversed by first selecting a desirable collapse mechanism, then working backwards to select members that would lead to the desired outcome. This article provides an overview of the newly developed Performance control methodology of design for lateral resisting frameworks with a view towards integrity control and prevention of premature failure due to propagation of plasticity and progressive P-delta effects.

Development of roll - up ventilation system for pipe- constructed plastic film greenhouse (파이프 비닐온실용 권취식 창개폐기의 개발)

  • 이기명;박규식;김유일;김태홍
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.232-239
    • /
    • 1995
  • This study was carried out to get required torque data needed to design and develop a roll-up ventilation system in a pipe-constructed plastic film green-house. The results obtained from this study are as follows : 1. The required torques of a roll-up ventilation system in greenhouse are the functions of its length. The torques should multiplied by the conversion coefficients (2.0 in ceiling vent, 1.8 in side vent) in case of application. 2. In constructing pipe-constructed plastic film greenhouse, a shaft pipe is the largest essential element in roll - up shaft weight constitution which have an effect on the required torques. Therefore, the pipe should be light using nonferrous materials like aluminum alloy. 3. A planetary reduction ventilator of differential ring gear type is suitable for a roll-up ventilation system, because it can make high efficient reduction just using the first step shift.

  • PDF

3-D Frame Analysis Using Refined Plastic Hinge Analysis Accounting for Non-Proportional Loading (비비례하중을 고려하는 개선소성힌지 해석을 이용한 3차원 강뼈대 구조물의 해석)

  • 김창성;김승억;주환중
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.77-84
    • /
    • 2003
  • In this paper, the refined plastic-hinge analysis accounting for the effect of strain reversal caused by non-proportional loading is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem, conventional refined plastic-hinge analyses have underestimated the strength of structures subjected to non-proportional loading, is overcome. The modified stiffness degradation model approximating the effect of strain reversal is discussed in detail. The proposed analysis is verified by the comparison of the finite element analysis. A case study shows that the effect of strain reversal is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

  • PDF