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Abstract

This paper presents a brief overview of the recently developed performance-control method of moment frame design
subjected to monotonously increasing lateral loading. The final product of any elastic-plastic analysis is a nonlinear load-
displacement diagram associated with a progressive failure mechanism, which may or may not be as desirable as expected.
Analytically derived failure mechanisms may include such undesirable features as soft story failure, partial failure modes, over-
collapse, etc. The problem is compounded if any kind of performance control, e.g., drift optimization, material savings or
integrity assessment is also involved. However, there is no reason why the process can not be reversed by first selecting a
desirable collapse mechanism, then working backwards to select members that would lead to the desired outcome. This article
provides an overview of the newly developed Performance control methodology of design for lateral resisting frameworks with
a view towards integrity control and prevention of premature failure due to propagation of plasticity and progressive P-delta
effects.

Keywords: Performance control, Plastic design, Lateral loading, Sway mechanism, Stiffness degradation, Minimum weight,
Uniform response, P-delta effects

1. Introduction

There has been a surge of interest in Performance-

Based-Plastic-Design (PBPD) methods of Earthquake Re-

sistant Frameworks (ERF),  e.g., (Fajfar, 2000), (Priestly

et al., 1991, 2005), (Goel et al., 2010) and (Grigorian and

Grigorian, 2011, 2012a, 2012b) in the past ten years. ERF

are special classes of ductile structures that are expected

to undergo large inelastic displacements, while sustaining

some degree of structural integrity. The focus of the pre-

sent work is on the design component of closed form

PBPD methodologies, with emphasis on integrity control,

structural degradation and material optimization rather

than the analytic intricacies associated with such design

procedures. The P-delta effect tends to accelerate the glo-

bal loss of strength and stiffness of ERF due to premature

formation of plastic hinges in the weakest elements of the

structure, thus compounding a highly nonlinear behavior

with an even higher degree of complexity. Performance

Control (PC) introduces a relatively simple technique for

circumventing the computational difficulties arising from

such mathematical complications, with the ability to pre-

vent and/or to control the loss of structural integrity in

terms of postulated occurrences. All ERF are to be desi-

gned and constructed in strict compliance with pertinent

code requirements. However, there are also many ins-

tances where engineers may opt for higher standards and

enhanced design features such as those discussed in

section 2.2

The conservative assumption made in this work is that

the effects of strain hardening, yield over-strength and pla-

stic hinge offsets from column center lines can be ignored

for preliminary design purposes.

2. Design Requirements and Features

2.1. Basic design requirements

The minimum requirements for efficient ERF design may

be summarized as follows, that;

• the design shall correspond to a kinematically admissi-

ble failure mechanism that satisfies the prescribed

yield criteria, static equilibrium and boundary support

conditions,

• the maximum inter-story drift of each level shall be

that specified by the codes,

• all columns shall remain stable and essentially elastic

through all phases of loading, and

• detailing, specifications and workmanship shall be in

accordance with the requirements of the prevailing

codes of practice.

The first three of these requirements are incorporated

into the proposed design formulae, therefore eliminating

the need for further checking and investigation of the final
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results.

2.2. Enhanced design features

In addition to minimum design requirements, the fol-

lowing performance enhancing features, may also be in-

corporated as part of the proposed design strategy, that;

• the maximum allowable drift angle shall be the same

for all stories, (this reduces the effects of the P-delta

forces),

• the theoretical total weight of the structure shall be a

minimum, (this is associated with lower costs),

• gravity loads shall not reduce the ultimate carrying

capacity of the structure, (this eliminates beam me-

chanisms),

• design formulae shall address stiffness degradation

and strength deterioration due to large axial forces and

formation of plastic hinges, (this provides hands on

control and added insight for the designer)

• the solution shall address damage control and pre-

determined target decisions.

The implementation of these requirements by conven-

tional methods of approach may entail several cycles of

elastic-plastic analysis and code checks of continuously

degrading systems, until a satisfactory convergence of

checks and balances is established. Unlike conventional

methods of design, where members are selected through

preliminary sizing, the proposed method relies on system

specific performance, where the elements of the frame-

work are selected in accordance with the aforementioned

criteria as pre-imposed conditions. In other words, failure

mechanisms and stability conditions are enforced rather

than tested, both strength and stiffness are induced rather

than investigated, and material saving is achieved by

selecting member demand-capacity ratios as close to unity

as possible. The method is designed to avoid numerically

massive, often theoretically complicated, analysis needed

to estimate the lateral displacements of the structure under

steadily increasing lateral forces, and, by focusing atten-

tion on system specific characteristics, it enables the desi-

gner to control the response of the structure at pre-selected

performance stages such as before and at first yield, any

fraction of the failure load or specified drift ratios up to

and including incipient collapse. The methodology reduces

the otherwise complicated task of structural optimization

to direct design through rational member selection and

observation of recommended rules of application. Most

importantly, the proposed formulations help engineers gain

insight into the structural behavior of ERF of Uniform

Response (UR), (Grigorian 2013), and lend themselves

well to manual as well as spreadsheet computations. In

structures of UR, members of the same group, such as

beams, columns and braces, share the same demand-capa-

city ratios regardless of their numbers and location within

the system. In PC theory of structures is applied rather

than followed. The focus of the present article is on

indirect design optimization rather than analysis of the

resulting system. While the proposed approach is general

and may be extended, with minor modifications, to the

efficient desig of all types of ERF, with different boun-

dary conditions, such as eccentric and concentric braced

frames, special truss moment frames, shear walls, etc., it

was deemed instructive to introduce the basis of the pro-

posed algorithm by exploring the performance of grade

beam supported regular moment frames under lateral

loading. However, some of these applications may be

limited in nature to none slender frames, as the assump-

tion of uniform drift my not be compatible with higher

modes of natural vibrations of tall buildings, (BSSC,

FEMA-356, 2000) and (Goel and Chopra, 2004). It has

been assumed that the effects of shear, axial, panel zone,

cracking and time dependant deformations, on the for-

mation of plastic hinges can be ignored for the purposes

of this presentation.

3. Moment Frame Response

3.1. The failure patterns

An understanding of the intricacies of the ultimate load

behavior of moment frames and their failure patterns is a

priori to appreciating the essence of integrity control and

minimum weight design. While the plastic design of

common types of moment frames is investigated in con-

nection with several failure patterns, including the soft

story mode of Fig. 1d, moment frames of UR are desi-

gned, to fail through a global sway mechanism involving

beam ends only. In fact, the elements of such frames are

Figure 1. (1b) Laterally Loaded Moment Frame with, (1c) plausible and (1d), prevented failure mechanisms.
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designed and arranged in such a way as to fail through a

failure pattern that is compatible with the pre-selected

linearly varying drift function, as shown in Fig. 1c. Inter-

story failure, such as that depicted in Fig. 1d is prevented

from occurring during all stages of formations of plastic

hinges. Similar descriptions of failure mechanisms can be

found in the MCEER-00-0010 report. Consider the per-

formance of the regular moment frame of Fig. 1b under

monotonically increasing distribution of lateral forces Fi,

such as those presented in Fig. 1a and axial joint forces

Pi,j at each joint i,j, as shown in Fig. 2a. Also consider the

proposed sway type, beams-only failure mechanism of

Fig.1c, with an idealized design drift function of the

form; σsφi,s = σsφs = ∂/∂ ( /H)∆m,s or φi,s = φs = ∆m,s/H,

where the code prescribed inter-story rotations φi,s or the

ith story drift ratios at sth loading stage, remain the same

along the height of the structure. Symbol σs implies in-

crement at sth consecutive iteration. Equal joint rotations

also imply imposition of points of zero moments at co-

lumn midpoints. This in turn suggests that the most ideal

lateral deformation profile for any frame, is that in which

the code prescribed story level displacements fall along

the same straight line defined by σs∆i,s = ∂sφi,s = ∂sφs ,

where, ∆m,s is the roof or mth level lateral displacement at

sth response stage. H and  are the roof and ith level ver-

tical distances from the base respectively. Now if

∆m,s ≤ ∆m,Code and  where, λ

> 1.0 is the column over-strength factor, and, NP and MP

are the column and beam plastic moments of resistance,

magnified by the P-delta effects, respectively, then the

proposed failure pattern would be in compliance with the

requirements of the first three design conditions men-

tioned above. It therefore remains to select the properties

of the constituent elements of the structure in such a way

as to achieve the additional performance goals listed

under subsection 2.2 above. However, since the members

of the frame are to be selected in such a way as to enforce

a beams only failure mechanism, through proportional

imposition of element strengths, it will not be necessary

to check the carrying capacity of the structure for the un-

likely soft story collapse mode of Fig. 1d.

3.2. Load-displacement relationships

The sequential changes in the inter-story drift angles of

any level i can be shown to be composed of two dominant

components; beam rotations ∂sθB.i,s = ∂sθB,s and, column

rotations ∂sθC.i,s = ∂sθC,s, i.e.,

(1a)

Indexes B and C refer to beams and columns respec-

tively. In order to verify the validity of the selected failure

pattern, three independent equilibrium equations, pertain-

ing to the static equilibrium of beams and columns of a

representative sub-frame, Fig. 2a, and the global equili-

brium of the entire structure, Fig. 1b, need to be satisfied.

The equilibrium equation of the continuous beams of the

ith level sub-frame, in terms of beam stiffness ki,j and addi-

tional beam rotation ∂sθB,s at any stage s can be expressed

as;

(2a)

Where, for the sake of expediency, beam relative stiff-

ness factors ki,j are related to the sequence of formation of

plastic hinges s, by means of the replacement subscript r,

rather than their location j. This is achieved by replacing

ki,j with ki,s and  with  and incorporating

the symbol  and  in all forthcoming equations in

order to include the effects of formation or prevention of

formation of plastic hinges at the ends of beams i, s. 

= Vi,shi and  are defined as the rack-

ing and average racking moments acting on ith level beams

at sth response stage. = V1,sh1/2, and =

= Vm,shm/2 define the average racking moments of

the grade and roof level beams respectively. Eq. (2a)

gives the corresponding changes in θB,s due to changes in

 as;

(2b)

With ∂sθB,s known, the magnitude of the corresponding

end moments of beam i,j at sth response stage may be com-

puted as; ∂sMB.i,s = 6Eki,s∂sθB,s, then by substituting for

∂sθB,s from Eq. (2b), it gives (Grigorian and Grigorian.,

2012c);

(2c)

Eq. (2c) is also referred to as the moment increment

formula. The group of Eqs. (2) represent both the elastic

as well as plastic response of the subject sub-frame,

where by definition the subscript s also represents the

stiffest member of the ith level beams. fCr.i,s, is the capacity

reduction or moment magnification function elaborated

upon in subsection 2.3 below. = 0 for MB.i,s =

and implies loss of stiffness with respect to member i, s.

= 1 for MB.i,s < . In mathematical terms, 
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Figure 2. Laterally Loaded Representative Subframe with Constant Drift Profile.
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= 1 for r > s − 1, and = 0 for r ≤ s−1. Similarly the

equilibrium equation of the columns of the ith level sub-

frame, in terms of column stiffness ki,j and additional

column rotation ∂sθC,s at any stage s can be expressed as; 

(3a)

(3b)

The additional end moments of column i,j at sth res-

ponse stage may be computed as; ∂sMC.i,s = 6E ∂sθC,s,

then Eq. (3b) gives;

(3c)

 and  have been introduced to include the contri-

bution or lack of contribution of column stiffness to over-

all stiffness of the structure due to formation of plastic

hinges at the ends of the adjoining beams. Numerically,

= 0 for MB.i,j =  and MB.i,j−1 = , otherwise

= 1. Substituting for ∂sθB.i,s and ∂sθC.i,s from Eqs. (2b)

and (3b) respectively into Eq. (1a) and rearranging,

yields;

(4a)

as the total drift angle variation of the ith level sub-frame

at sth response stage. η i =  is generally referred to

as the story level racking ratio. η 0 = ηm = 1 for grade and

roof level beams. And, since, , then the total

additional drift angle of the uppermost level at i = m could

be expressed as;

(4b)

Eq. (4a) is also known as the drift increment formula

and reduces to a previously established result for i = j = 1,

(Grigorian, 1993). Eqs. (2c) and (4a) together describe

the step-by-step response of the constituent elements of

the structure caused by the phenomenon known as pro-

gressive collapse. The physical meanings of δ j and δr in

relation to existence or lack of existence of plastic hinges

at beam ends are portrayed in Fig. 3. The existence of

plastic hinges at the ends of the adjoining beams of Figs.

3a and 3b, render the stiffnesses of the subject columns

inactive, whereas the lack of or the insufficiency of

number of plastic hinges in Figs. 3c, 3d and 3e, allows the

corresponding columns to contribute towards the global

stiffness of the framework.

Plots of Eq. (4b), as presented in Fig. 5, for a generic

single story frame, indicate three distinct modes of beha-

vior: perfectly elastic, signified by the straight line run-

ning from φ = 0 to first yield at φY, the elastic-plastic

curvilinear segment from φY to φP at incipient collapse,

and the perfectly plastic region corresponding to the fully

ductile nature of the system. Goel and Chopra (2004) have

shown that the plastic beam rotations predicted by the

corresponding components of Eq. (4a) are in excellent

agreement with the results of response history analysis

conducted for a group of six buildings ranging from 9 to

20 stories in height.

3.3. Variations of the Capacity Reduction Function

The term fCr.i,s =  is also known as

the moment magnification or capacity reduction function.

 and PCr.i,s = Ki,shi are the total axial load and the

critical axial load of level i at sth response stage respec-

tively. The elastic failure load PCr.i,s may also be inter-

preted as that total axial load at which the stiffness of the

subframe becomes zero. The capacity reduction function

is highly sensitive to variations in story level stiffness.

While  remains constant for all s, the stiffness Ki,s

diminishes rapidly with advancing plasticity. If the

original value of fCr.i,s=1 = (1 − ρi,s=1) for s = 1, then the sub-

sequent values of the capacity reduction function in terms

of diminishing subframe stiffness may be expressed as;

(5a)

As demonstrated in the generic example of subsection

6.3, fCr.i,s decreases rapidly with advancing plasticity and

further deteriorates the global stiffness and load carrying

capacity of the structure up to and including incipient col-

lapse. It may be instructive to note that, for the subject

example, fCr.i,s decreases from 0.9, at zero lateral loading,

to 0.41 at incipient collapse.
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Figure 3. Pictorial Presentation of the Physical Meanings of  and δr.δ j
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4. The Rules of Proportionality

By definition, a structural framework of UR is that in

which its sub-frames share the same drift ration and that

its members share the same demand-capacity ratios regard-

less of their numbers and location within the structure.

Therefore, in order to achieve uniform demand-capacity

throughout the system and fulfill the condition of compa-

tible drift angles along the height of the frame, the fol-

lowing conditions should be satisfied;

4.1. Global compatibility

The global equilibrium equation of the moment frame

of UR, in terms of its incremental drift angles and beam

moments can now be written as;

(6a)

=

Equating Eq. (2b) and (6a), gives;

(6b)

=

Assuming that the ratio Pi,j/PCr.i,s is constant for all

i, then fCr.i,s would also be constant along the height of the

structure. The constancy of ∂sθC.i,s = ∂sθC,s, implies a state

of uniform stiffness demand-capacity for all beams of the

frame. Next, substituting for ∂s = ∂s  Eq.

(6b) becomes;

(6c)

=

Eq. (6c) can be satisfied only if the following propor-

tionality conditions are met;

... ... (6d)

It follows therefore, that a similar rule of proportio-

nality can be deducted for beam moments, i.e.,

... ... (6e)

In other words, the condition of uniform drift requires

that the sum of the stiffnesses of beams of each story be

selected in proportion with the average racking moments

of that story. The practical implications of Eq. (6e) is, that

if a suitable solution can be found for any subframe, say

that at i = m, then the corresponding solutions of all other

sub-frames can be computed in proportion with their

average racking moments. A similar set of rules could be

derived for the columns, i.e.,

... ... (6f)

... ... (6g)

4.2. Applications

Eqs. (6e) through (6g) collectively represent the pro-

portionality rules for moment frames of UR. ∂sCB.i,j =∂s
/∂s  and ∂sCC.i,j = ∂s /∂s  are the propor-

tionality multipliers for the beams and columns of the ith

level subframe at sth loading stage respectively. Once the

multipliers CB.i,j and CC.i,j are known, the required design

items Ii,j, Ji,j,  and  can be computed in terms of

their corresponding quantities, that bear the subscript i = m.

Therefore, by direct proportioning;

and (6h)

and (6k)

In other words, if the drift ratio is to remain constant,

i.e., φi = φm, then the stiffness Ki = (Vi/Vm)(hm/hi)Km of all

other levels can also be determined by simple proportio-

ning. The use of these multipliers is shown in section 7.2

below.

4.3. The energy absorption capacity

Since the load-displacement relationship (4b) of any

level i can be expressed in terms of a single variable φi,s,

for all phases of the monotonically increasing lateral loa-

ding, then the entire subfloor may be construed as a stati-

cally determinate, single degree of freedom (SDOF) sys-

tem, for which the total internal energy absorption capa-

city may be expressed as;
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ding load-displacement curves, such as those depicted in

Fig. 4. The energy absorption capacity, Ui, becomes more

meaningful when used in conjunction with the equivalent

dynamic energy, UE, due to Housner (1992) for the base

shear determination of SDOF ductile systems, under

seismic conditions. It is instructive to note that the term

Ui of Eq. (5b) contains the capacity reduction factors ,
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tude of Ui are discussed under subsection 6.3 and 7.2
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(6n)

Eq. (6n) can now be used to compute the total energy

absorption capacity of the entire structure in terms of the

roof level capacity Um, racking moment  and the total

overturning moment MO’ i.e.

(6p)

While the term Ui is valid for all typical subframes dis-

cussed in this article, the summation Eq. (6p) is appli-

cable only to moment frames of UR where the energy

absorption capacity of each subframe is proportional to

the demand imposed upon it. The global energy capacity

is used in conjunction with the equivalent elastic input

energy from the ground motion to estimate the correspon-

ding base shear in terms of structure and site specific

data.

5. Plastic Limit State

5.1. Plastic design and minimum weight solution

An important characteristic of proportionately designed

subframes of UR (Grigorian, 1989) is that the weight of

each segment is a minimum with respect to the demand

imposed upon it. Minimum weight segments are, obvious-

ly, more flexible than their regular counterparts and need

to be safeguarded against local instabilities at large axial

loads. The softening or loss of stiffness of such frames

may be estimated, to a very good degree of accuracy by

including the P-delta effects in the corresponding plastic

limit state analysis, as presented in this section. Since Eq.

(6f) is valid for all loading stages, then its final form at

incipient collapse may be expressed as;

(7a)

The virtual work equation corresponding to failure pat-

tern of Fig. 1c, may be expressed as;

(7b)

where, θ is an auxiliary virtual rotation, corresponding

to δ i = θhi. Eq. (7b) may be simplified, in terms of the

average racking moments and the moment magnifying

factor as;

(7c)

The virtual work equation corresponding to the typical

subframe failure mechanism of Fig. 2b, with uniform floor

moment of resistance  for all j, can be written

down as;

(7d)

Substituting for  and , assu-

ming fCr.i is constant for all practical purposes, and com-

bining Eqs. (7a), (7c) and (7b) gives;

(7e)

as the plastic collapse load of the structure in terms of

the plastic moment of resistance of the roof level beams

and is used to verify the validity of the long hand solu-

tions presented in the forthcoming sections.

5.2. On soft story failure

Theoretically, an independent soft story failure, invol-

ving columns only, can also be envisaged for a typical

subframe at level i. The virtual work equation for the shear

type collapse mechanism of Fig. 2c, may be expressed in

terms of column moments of resistance as;

(7f)

With  and  for all other j, Eq.

(7f) reduces to; Vihi = 8n fCr.i, which, when compared

with Vmhmi = 8n fCr.m gives = (Vihi/Vmhm) =

CC.i,j ×  a result, previously established through direct

proportioning. Now if  and as indicated in sec-

tion 3.1, λ > 1.0, then no soft story mechanism can develop

within the subframes of the system. Eq. (7a) describes a

state of uniform demand-capacity for all members of the

structure at collapse. However, since uniform demand-

capacity means providing just as much capacity as de-

manded, then the entire framework constitutes a structure

of UR and therefore of minimum weight. In other words,

since the proposed yield pattern satisfies both the kine-

matic as well as the static conditions of plastic failure, is

compatible with the boundary support conditions and does

not violate the prescribed yield criteria, then the design is

unique and represents a minimum weight solution, (Foul-

kes, 1953) and (Neal, 1963) and Since the factor fCr.m in

Eq. (7e), is independent of the mode of propagation of

plasticity, then it can also be associated with an equi-

valent single stage loading, s = 1, i.e., when all plastic

hinges form simultaneously. This limits the use of the

virtual work method to the analysis of moment frames of

single stage UR under combined axial and lateral forces

and/or similar frames under negligible gravity loading.

This problem is resolved, as described in the next section,

by allowing for the stiffness degradation of the yielding

members and controlling the sequential formation of the

plastic hinges.

5.3. On boundary support conditions

It is rather significant that the plastic failure load, Eq.

(7e), of the generic moment frame of UR, with moment

resisting grade beams, subjected to an arbitrary distribution

of lateral forces with an apex value F at i = m, is inde-

pendent of the number of stories, m, and the type of boun-
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dary support conditions at i = 0. The grade beams provided

at the base of the generalized moment frame of Fig. 1b,

not only constitute integral parts of the lowermost sub-

frame but also act as natural control devices used to pre-

vent formation of plastic hinges at the lower ends of the

base level columns. The intuitive substitution of = 0

for hinged supports, and  for fixed end condi-

tions, could lead to violation of the prescribed yield

criteria as well as incorrect distribution of internal forces

at the most critical sub-frame of the system. However, in

order to incorporate the effects of column supports at the

base, without raising major theoretical issues, it was

deemed expedient to rewrite the proportionality rules (6n)

for the members of the base level subframe in terms of

the column over strength factor λ and symbols defining

the standard boundary conditions, i.e.,

(7g)

(7h)

(7k)

=

Where, the boundary symbols δfix.., δpin.. and δbeam.. are

numerically equal to unity with respect to their own case,

and are zero for the other two cases. However, in order to

show that in moment frames of UR, the representative

failure load, FP = 4nMPfCr.m/hm is independent of both the

number of stories and the boundary support conditions, it

would be sufficient to substitute Eqs. (7g), (7h) and (7k)

into the expanded virtual work Eq. (7m) and perform the

corresponding summations for any given moment frame

of UR. It will be seen that the right hand side of Eq. (7m)

remains the same for the different boundary support types

discussed in this work.

(7m)

+

5.4. Introductory example I

Assuming fCr.i = fCr., λi = λ = 1, h1 = h2 = h3 = h = L and

ρ = (JL / Ih) = 1, generate moment frames of UR, with

hinged, fixed and grade beam supported first floor co-

lumns and compare their performance for the same uni-

form drift angle φ. For the loading and frame configura-

tion see Fig. 4. Using Eq. (6k) and the following drift

angle formulae for the lowermost subframes of the three

alternatives at incipient collapse; φbeam = Fh2/12fCr.EIbeam,

φpin = Fh2/4fCr.EIpin and φfix = Fh2/12fCr.EIfix, it gives; Ibeam
= I, Ipin = 3I, and Ifix = I.Next, using Eq. (7e) as the star-

ting point, for plastic moment calculations and employing

Eq. (6k) in conjunction with directives of Eqs. (7g) through

(7m) and (6h), the desired solutions are worked out as

shown in Figs. 4a through 4c. The virtual work equation

for all thee cases of Example I may be written as;

(7n)

which reduces to Eq. (7e). Similarly, the lateral displace-

ment equation for the all three cases may be expressed as;

δ i = Fh3i/12fCr.EI, where i = 1, 2 and 3. To compare the

efficiencies of the three basic boundary support condi-

tions, their total weight functions in terms of their section

properties may be expressed as;

(7p)

where, C is an arbitrary constant of proportionality.

Assuming λ = 1.1 and substituting for  and  from

the frames of Fig. 4 into Eqn. (7p), it gives; Gbeam = 58.8

CLMP/3, Gpin. = 72CLMP/3 and Gfix = 52.8CLMP/3. As ex-

pected the stiffer boundary support conditions result in

higher economies with respect to the same external loading.

5.5. Sequential propagation of plasticity

Fig. 1c depicts the final stage of formation of plastic

hinges corresponding to a kinematically admissible failure

mechanism, but furnishes no information regarding the

history of formation of plastic hinges before collapse.

While the minimum number of sequences of formations

of plastic hinges could be as small as smin = 1, the maxi-

mum number of such formations, leading to the same

failure pattern could be as high as; smax = (m + 1)n, or the

total number of beams in the structure. However, experi-
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ence has shown that, smax = n = number of bays or smax
= m = numbers of stories offer more practical options for

design purposes. For instance, if option smax = n is selec-

ted for the purposes of this section, then Eq. (2c) can be

employed to establish the first, r = 1, increment of loading

that causes formation of the first set of plastic hinges in

the beams of the stiffest elements of any representative

story, say the roof level beams. i.e.,

(8a)

Obviously, the balance of bending moment needed to

elevate the moment of resistance of the next stiffest beam,

s = 2, to MP can be computed as [1 − (km,s=2/km,s=1)]M
P.

Therefore, the amount of additional force required to ge-

nerate plastic hinges at the ends of the next stiffest beam

may be generalized as;

(8b)

Interestingly enough, the sum of the incremental forces,

∂sFm,s for constant fCR,m, can be shown to add up to the

ultimate load, , i.e.,

 = (8c)

a result, that as expected, coincides with Eq. (7e) above.

Obviously, since fCR.m,s < 1.0 then for any value of the

capacity reduction function, FP < 4nMP/hm. Eqs. (4a) and

(8a) indicate that each stage of propagation of plastic

hinges characterized by s = 1, 2…, n may be construed as

a target design point or a state of stable damage with

respect to fully elastic or fully plastic conditions of the

structure. The final stage characterized by Eqs. (8c) or

(7e) also represents a minimum weight, unique state pla-

stic design since it satisfies the prescribed yield criteria,

and static equilibrium as well as the selected boundary

support conditions at incipient collapse. This implies that

the proposed scheme also provides an envelope of several

initial designs within which member sizes could be rear-

ranged for any purpose while observing the prescribed

performance conditions. For long hand numerical solutions

the interested reader is referred to (Grigorian and Gri-

gorian, 2012c).

6. On Structural Integrity

6.1. On degradation of structural integrity

In a severe seismic event, ERF have the potential to fail

in a side sway mode due to diminishing structural inte-

grity. Structural integrity may be defined as the measure

by which a stable system performs under severe or extra-

ordinary loading conditions. Depending upon the functional

use of a structure, its integrity may be related to a demand-

capacity quotient or a load-displacement relationship. In

either case, structural integrity is always associated with

global strength Fs and stiffness Ks, at any loading stage s.

An appreciation of the nature of degradation of the sub-

frame stiffness Ki,s, and sub-frame ultimate capacity ,

under monotonically increasing lateral forces, is essential

to understanding the performance of ERF in general, and

moment frames in particular. Progressive plasticity and

+increasing P-delta effects tend to rapidly diminish the

global strength and stiffness and modify the static as well

as dynamic characteristics of ERF under seismic condi-

tions. The effects of structural degradation are more pro-

nounced in multistory frames since many members with

similar characteristics either, fail, become inactive or de-

velop plastic hinges simultaneously. Sequential degrada-

tion of the global strength and stiffness, in structures sus-

taining incremental forces can, in general, manifest itself

through several or combination of several effects, namely

by;

• reducing the energy absorption capacity of the struc-

ture, depending upon the sequences and patterns of for-

mations of the plastic hinges,

• increasing the risks of local, racking and global ins-

tabilities due to overburdening of the remaining active

elements,

• increasing the natural period of vibration of each stage

of global loss of stiffness with advancing stages of loa-

ding until the structure ceases to resist external forces,

• reducing the load carrying capacity of the structure

during all loading stages, and at plastic collapse, due

to ever increasing P-delta effects.

• increasing the magnitude of the lateral drift ratio throu-

ghout the loading history of the framework.

6.2. On quantification of structural integrity

The ability to define and quantify structural integrity for

ERF may lead to prevention of disproportionate, global

and/or progressive collapse of earthquake resisting sys-

tems. The global loss of structural integrity of earthquake

resisting moment frames, amongst other causes, can be

attributed to any one or combinations of the following

member related factors;

• Loss of individual beam stiffness, due to formation of

plastic hinges at beam ends, symbolized by 

in Eqs. (2c) and (4a),

• Loss of individual column stiffness, due to formation

of plastic hinges at column ends, symbolized by = 0

in Eqs. (3c) and (4a),

• Inactiveness of individual column stiffness, due to for-

mation of plastic hinges at the ends of the adjoining

beams, symbolized by , and as shown in figure

3 above,

• Loss of subframe racking stiffness Ki,s, due to collective

P-delta effects symbolized by fCR.i and,  and ,

appearing together in all equations of this article.
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In order to manage the myriad factors that influence

structural integrity, it seems rational to define a single, uni-

form criterion that can address each form of deterioration

separately, on the same scale, say from one to zero. Since

there are no commonly accepted definitions or measures

for structural integrity, the authors propose to compare

any intermediate state of structural integrity with its ori-

ginal, undamaged, perfectly elastic condition, in terms of

such meaningful, quantities as; (Ks/Ks=1) as a measure of

stiffness degradation, (Fs/FP) as an indication of dimini-

shing strength, (Us/UP) as the remaining energy absorp-

tion capacity quotient and (φs/φP) as the rotational capa-

bility of the remaining, undamaged system, etc,. There-

fore the proposed integrity ratio at any loading stage may

be expressed as;

Integrity Ratio = Remaining Capacity / Original Capacity

(9a)

The parametric example, 6.3, has been designed to de-

monstrate how rapidly fCr.i,s decreases with advancing pla-

sticity and deteriorates the general integrity of the struc-

ture during all loading stages up to and including incipient

collapse. It may be seen from the numerical results of

example 5.3, Table 1, that as fCR.i,s decreases from an ini-

tial value of 0.90 to 0.87 at first yield, the corresponding

integrity ratios, in terms of remaining stiffness, load carry-

ing capacity, energy absorption, and drift allowance be-

come 0.76, 0.27, 0.68 and 0.47 respectively. Apparently,

while the structure has retained over 75% of its global

stiffness, K, it has lost over the same percentage of its

load carrying capacity FP at first yield. Finally, since the

rate of degradation of structural integrity is a function of

the pattern and sequence of formation of plastic hinges,

all subscripts j have been replaced with subscript s to

relate the loss of structural integrity to sequential forma-

tion of plastic hinges. However, while the proposed inte-

grity measures could be used effectively in connection

with simple ERF, it is felt that more research is needed

before a consensus can be reached on the subject.

6.3. Introductory example II

Consider the incremental lateral displacements of a

singly story (m = 1) × (n = 10) moment frame with grade

beams, subjected to a roof level, monotonically increa-

sing lateral force F and axial nodal loads P. The roof and

the grade level beams have identical properties. The geo-

metric and sectional properties of the frame are given as;

L1 = L2 = L = h, L3 = L4 = 1.25L, L7 = L8 = 1.75L, L9 =

L10 = 2.0L. Ij = I, Jj = 2J1 = 2.2I, J1 = J10 = J = 1.1I, ρ1 =

10P/PCR = 0.1, = MP and > 2MP. i.e., k1 = k2 = I/L,

k5 = k6 = I/1.5L, k3 = k4 = I/1.25L, k7 = k8 = I/1.75L, k9 =

k10 = I/2L, = = J/h = 1.1I/L and =2.2I/L for all other

“j”. Since for s = 1, , then; = 20J/h =

22I/L and = 2 × 7.0762I/L = 14.1524I/L.

The purpose of the long hand solution presented herein

is to demonstrate the influences of the failing and/or inac-

tive members in deteriorating the structural integrity of the

system, due to propagation of plasticity and continuously

increasing effects of the capacity reducing function.

As there are at least five distinct sets of beam stiff-

nesses, then s = 5. Eqs. (2c), (4b), (5a), and (8a) are then

used to provide the complete solution to the progressive

plasticity of the subject moment frame as presented in

Fig. 5 and Table 1 below, where K0 = EI/Lh2, φ0 = MPL/

EI and F0 = MP/h. Figure 5 displays the load-displacement

relationship for three distinct values of the capacity re-

duction function. The upper curve, corresponding to ρ = 0

and fCr = 1.0, i.e. no P-delta effects, has been provided for

comparison only. The dashed curve corresponds to a con-

stant value of ρ = 0.1 and fCr = 0.9, a number favored by

most codes, e.g., ACI 318-02 Ch.21, and has been presented

to illustrate the effects of constant magnifying factor on

the performance of the system. The lowest curve corres-

ponds to a naturally varying fCR with an initial ρ = 0.1,

and becomes smaller with advancing plasticity. The im-

plications of the three conditions may be studied by com-

paring their effects on the limit state performance of the

subject structure, i.e.; = 40.00MP/h, =

36.00MP/h and = 34.67MP/h. Loss of capacity

can also be computed by comparing the actual capacities

of the system with respect to different conditions of fCr.

The internal energy absorption capacity Uρ=0 for the pre-

ceding example can be worked out as the total area under

the upper force-displacement curve of Fig. 4, i.e., Um,4 =

12.54(MP)2L/EI. Similarly, the quantity Uρ=0.1,Var. = 11.04

(MP)2L/EI can be computed as the reduced capacity of the

entire system due to progressive P-delta effects.

7. Design Strategy

7.1. Preliminary member selection

While the preliminary sizing of the members of ERF,

due to iterative processes, has little or no effect on the

outcome of linear design solutions, it may impact the

mode of formation of the plastic hinges as well as the

ultimate carrying capacity of the subject frameworks. In

the proposed methodology the entire design strategy is

based on the rational selection of the constituent elements

of the system, with a definite outcome in mind, rather

than investigating the results of numerical computations.
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Perhaps the most useful utility of the proposed procedure

is the ability to control the manner and sequences of

formation of plastic hinges with respect to predetermined

force levels or stipulated drift angles. Practically speak-

ing, there are several preliminary selection options and

their combinations for the beams and columns of repre-

sentative subframes. However, the following three options

lend themselves well to practical performance control and

strategic decision making, namely;

1-Beams and columns of uniform stiffness and strength,

where, ki,j = ki, ,  and . This

corresponds to a state of single stage UR where all

members of the same group share the same demand-capa-

city ratio. In single stage structures of UR all members

develop plastic hinges simultaneously, as if acting as a

statically determinate single degree of freedom system.

While this particular characteristic of single stage struc-

tures of UR deprives the moment frame from its inherent

redundancies, it allows the designer to either delay or

accelerate the modes of formation of the plastic hinges of

selected groups of beams by using such basic techno-

logies as Reduced Beam Sections (RBS) and/or Added

Flange Plates (AFP). Depending on the statement of the

problem, anyone of these two control options and their

combinations may be utilized to modify the ultimate

carrying capacity of the system in a positive or negative

sense. RBS modifications tend to decrease, while AFP

enhancements tend to increase the plastic collapse capa-

city of ductile systems. By the same token, RBS treat-

ments tend to compromise while AFP modifications tend

to enhance both local and global drift ratios. Naturally,

the two systems can also be combined to control the num-

ber of sequences of formations of plastic hinges, and

therefore the ultimate response of the structure as desired.

This option is also suited for reinforced concrete (RC)

frames, where sectional dimensions and rebar sizes can

be adjusted rather freely.

2-Beams and columns of uniform section and strength,

where, Ii,j = Ii, Ji,j = Ji,  and . This

corresponds to a state of uniform group response where

members of selected groups of elements, such as beam of

equal spans, may develop plastic hinges simultaneously,

depending upon the relative identical stiffnesses of the

group and magnitude of the applied loading. The se-

quence of formation of the plastic hinges of any series of

beams is the same as the sequence of decreasing order of

stiffness of the beams of the same series or floor level.

Each distinct stage of loading would then correspond to a

corresponding sequence of formation of plastic hinges,

such as the simultaneous yielding of the beams of the

shortest bay at first yield. The number of sequences of

formations of plastic hinges, or the number of distinct

control stages would then be the same as the number of

different bays/spans in the subframe. This scenario is

suited to both RC as well as steel moment frames, pro-

vided that differences in span lengths do not exceed 50%.

3-Beams and columns of uniform stiffness and length

proportional moments of resistance i.e., ki,j = ki, and 

= (Lj/L1)  for all j,  and  for j = 1, 2,

..., n−1.  and . This op-

tion is better suited for reinforced concrete (RC) frames

and tends to result in the less material consumption than

other choices available for the same purpose. However

least material consumption does not necessarily imply the

least overall cost. All such strategies lead to direct

member selection and admissible plastic design solutions.

Traditional, best-guessed selection options lead to investi-

gative processes and less efficient member design. The

importance of the initial selection of such members using

anyone of these strategies is best demonstrated through

generic deign examples presented below.

7.2. Introductory example III

Utilize the member selection strategy, option 2 des-

cribed above and consider the optimal design of a regular

(m = 15) × (n = 10) moment frame, such as that shown in

Fig. 1, under triangular distribution of lateral forces

Fi = F( /H) and axial nodal loads Pi,j, provided that

target drift ratios are limited to φY ≤ 0.01 radians and

φP ≤ 0.0175 radians at first yield and at incipient collapse

respectively. The geometric and material properties of the

uppermost level subframe at i = m are the same as those

described for the single story frame of subsection 6.3.

The material properties of all other levels, as those for

level i = m, are to be selected in accordance with the

recommendations of selection strategy 2, i.e., Ii,j = Ii, Ji,j =

2Ji = 2.2Ii, , Ji,0 = Ji,n = Ji = (ρ = 1.1)

× Ii,  and . Let for the sake of gene-

rality, h1 − h4 = 1.5h, h5 − h8 = 1.25h, h9 − h12 = 1.15h and

h13−h15 = 1.0h. Since the rules of proportionality, for mini-

mum material use apply, then the results of the numerical

solutions obtained for level i = m = 15 can be used to es-

tablish the minimum values of Im=15 = I and 

in conformance with the prescribed design conditions. The

complete solution to the progressive plasticity of the up-

permost level subframe of the subject multistory struc-

ture, which coincides with that of the single story moment

frame of the previous example, is presented in Table 1.

This solution offers a long range of control points, in

addition to the five distinct stages, which may serve as

target displacement for performance assessment of the sub-

ject single story or multilevel framework. From Eq. (4b)

and line 1, Table 1, I = Im = IY = 0.2739MPL/0.01E = 27.39

MPl/E, and from line 5, Table 1, I = Im = IP = 0.5167MPL/

0.0175E = 29.49MPl/E, therefore, IP > IY governs. The re-

quired design quantities Ii,j, Ji,j,  and  can now be

computed in terms of their corresponding quantities, bear-

ing the subscript m, by direct proportioning, in accord-

ance with Eqs. 6(h) and (6k). The complete design of the

introductory example II is summarized in Table 2 below.

ki j, ki= Mi j,

P
Mi

P
= Ni j,

P
Ni

P
=

Mi j,

P
Mi

P
= Ni j,

P
Ni

P
=

Mi j,

P

M
1

P
ki j, ki= Ni j,

P
Ni

P
=

ki 0, ki n, ki/2= = Ni 0,

P
Ni n,

P
Ni

P
/2= =

hi

Σj=0

n
Pi j, /PCRi 1, 0.1=

Mi j,

P
Mi

P
= Ni j,

P
2Mi

P>

Mm=15

P
M

P
=

Mi j,

P
Ni j,

P
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8. Conclusions

The purpose of this article was to advance the notion

that it is possible to design, theoretically efficient earth-

quake resisting moment frames, without resorting to com-

plicated analysis or sophisticated computer-aided solu-

tions. A goal was set to develop closed form load-dis-

placement and moment-distribution relationships that

would address the nonlinear response of such frames

throughout their monotonic loading history, starting from

zero to first yield, followed by successive formations of

plastic hinges up to and including incipient collapse. It

was stipulated, that these solutions, as preliminary design

tools, were to satisfy the fundamental strength, stiffness

and stability requirements of the codes as well as add-

ressing such important issues as integrity control, mini-

mum weight arrangements, propagation of plasticity and

the P-delta effects.

The stated goals were achieved by focusing attention,

primarily on the elastic-plastic flexural performance of

regular moment frames under purely lateral and axial

forces, i.e., by;

• Enforcing desirable collapse mechanism and stability

conditions, as opposed to ruling out undesirable failure

patterns and instability scenarios.

• Selecting the groups of members, such as beams and

columns in accordance with pre-determined selection

strategies instead of arbitrary element sizing.

• Inducing the strength and the stiffness of individual

members with a view toward their performance rather

than investigating their suitability for the purpose.

• Employing material saving strategies in which demand-

capacity ratios of the members of the same group are

as close to unity as possible.

• Imposing a linearly varying drift angle along the

height of the structure.

Structural frameworks inherently possessing these cha-

racteristics are collectively referred to as structures of uni-

form response. The proposed methodology not only results

in a practical tool for the efficient design of earthquake

resisting moment frames, but also provides means of

assessing the structural integrity of the system in terms of

such tangible quotients as the remaining capacity/original

capacity or the remaining drift angle/original drift angle

etc. Several generic examples were provided to illustrate

the applications of the proposed formulae. It was shown

by parametric solutions that the most useful utility of the

proposed procedure could be the ability to control the

manner and sequences of formation of plastic hinges with

respect to predetermined force levels and/or stipulated

drift angles. However, the applications of the proposed

methodology are restricted to monotonically increasing,

constant profile loading only. It should also be empha-

sized that the assumption of uniform drift may not be

compatible with higher modes of vibrations of very tall

buildings.
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