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Abstract

The paper reports results of recent studies on the effects of column support conditions on the lateral displacements of moment
frames at incipient collapse. The article presents a number of exercises in the plastic theory of structures that lead to useful
design formulae. It has been shown that Drift Shifting (DS) is caused due to differences in the stiffnesses of adjoining columns,
and that changes in drift ratios are more pronounced at first level column joints in both fixed as well as pinned base frames.

In well proportioned moment frames, DS in the upper levels could be minimized, even reduced to zero. It has been
demonstrated that DS can be eliminated in properly designed fixed and grade beam supported (GBS) moment frames. Several
examples, including symbolic P-delta effects, have been provided to demonstrate the validity and the applications of the
proposed ideas to the design and drift control of moment frames. The proposed methodology is exact within the bounds of the
theoretical assumptions and is well suited for preliminary design and teaching purposes.
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1. Introduction

Compliance with drift limits is one of the essential

requirements of most contemporary building codes, e.g.,

ACI (2005), AISC (2005), Eurocode 3 (2011), etc. Almost

all performance based plastic design methodologies, e.g.,

(Mazzolani, 1997; Priestly, 2007; Goel, 2008, 2010;

Grigorian, 2011, 2012a, 2012b) emphasize the importance

of drift control during elastic as well plastic phases of

loading. Lateral drift in multi-story buildings is influenced

by many factors. The scope of the current article is

limited to the study of the effects of boundary support

conditions on the lateral displacements of regular moment

frames at incipient collapse. DS is the change in drift

ratios of two consecutive levels in multi-story structures.

Acceptable levels of DS commonly occur in multi level

structures that have not been designed to withstand large

inelastic displacements. DS and its effects are more

pronounced in frames designed in accordance with plastic

behavior than those designed on the basis of purely linear

response. Plastic designs generally result in more slender

structures and are more likely to experience larger lateral

displacements (Hayman, 1961; Neal, 1963). While steel

moment frames under lateral loading are most suitable for

plastic design, they are also susceptible to unfavorable

effects of DS, especially at incipient collapse. (Hamburger,

2009) have reported that a reduction in DS can help im-

prove racking stability in all categories of moment frames.

A survey of the literature over the past 60 years, starting

with (Baker, 1964) including (Nethercot, 2001) up to

(Wong, 2009) and (Schafer 2010) reveals that there is still

scant information on practical methods of displacement

analysis for sway frames at incipient collapse. Despite the

encouraging surge of interest in machine oriented direct

second-order Analysis, e.g., (Surovek, 2006) and (Ziemian,

2008), there are no short cut manual linear and/or non-

linear methods of displacement analysis for such frames.

However, recent studies suggest that it is possible to

overcome the computational complexities associated with

manual displacement analysis of certain classes of ductile

systems at incipient collapse. Indeed, it is even possible

to reduce the otherwise complicated task of non linear

structural analysis to the study of one of the constituent

column trees of the same structure under its own distri-

bution of tributary forces. The paper attempts to show

that the lateral displacements of well proportioned GBS

moment frames could be smaller than identical frames

with fixed and pinned boundary support conditions.

While seismic loading is not addressed in this article,

its findings are highly applicable to performance based

plastic design of earthquake resistant frames. The success

of this approach may be attributed to the proper utiliza-

tion of the design rules as well as an understanding of the

elastic-plastic modes of response of ideally efficient mo-

ment frames at incipient collapse. An appreciation of the

pertinent design criteria as well as the conditions of desir-

able performance is a priori to establishing the forthcoming

arguments.
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1.1. Minimum design requirements

In the present context a properly designed moment

frame is that for which the constituent elements have

been selected in such a way that;

• the strong column-weak beam principle is observed

for all columns (as required by major codes)

• boundary support and static equilibrium conditions are

completely satisfied,

• the prescribed yield criteria are not violated anywhere

within the structure,

• all beams and columns are stable throughout the load-

ing history of the structure, all local, segmental and/

or global buckling is prevented.

• gravity forces are either negligible or the frame has

been designed not to develop beam type failure me-

chanisms (beam type mechanisms tend to increase la-

teral displacements),

• the global P-delta phenomenon has been taken into con-

sideration,

• the prescribed drift ratios are not exceeded at incipient

collapse,

• the entire structure and its supports have been designed

to allow the unrestricted development of plastic hinges.

Reduced beam sections (RBS) and/or added flange

plates are acceptable options.

• all other code and jurisdictional requirements are satis-

fied.

A properly designed moment frame may or may not

satisfy all conditions of frame efficiency described below.

However the case of a generalized, properly designed

frame that can be turned into an efficient system is briefly

introduced in the following section.

1.2 Design efficiency

In its most general sense, design efficiency implies en-

gineering expediency rather than mathematical optimiza-

tion. However, the proposed methodologies have been

formulated in such a way as to satisfy both the theoretical

as well as the pertinent engineering requirements. In well

proportioned frames the elastoplastic properties of the

constituent elements are selected in such a way as to

create of a structure of uniform response (Grigorian, 2012a,

2012d) where, members of similar groups such as beams,

columns and braces of similar characteristics, e.g., equal

lengths, share the same demand/capacity ratios regardless

of their numbers within the group. In other words well

proportioned frames are special classes of structures for

which element demand-capacities as well as target drift

ratios at incipient collapse are enforced rather than

investigated (Grigorian, 2013a, 2013b, 2013c). Well pro-

portioned frames lead to idealized designs and provide

theoretical basis for fine-tuning as well as basic analytic

studies. For instance, RBS technologies can be utilized to

control and induce the sequential formation of plastic

hinges at all beam ends. The class of efficient moment

frames introduced in this paper, satisfy all conditions of

the uniqueness theorem (Foulkes, 1953, 1954), (Grigorian,

1989, 2013c). An ideally efficient or well proportioned

structural framework, both from practical as well as theo-

retical points of view is that for which most of the fol-

lowing criteria can be satisfied. These include, but are not

limited to the conditions that;

• Structural irregularities are kept to a minimum and span

lengths are within practical limits.

• The self weight of the structure is a practical minimum,

i.e., the demand-capacity ratios of all members are sel-

ected as close to unity as possible.

• The variety of conforming shapes, sizes and connec-

tions is kept to a minimum for groups of similar ele-

ments, e.g. beams, columns and braces of any given

level or subframe.

• The permissible inter-story drift ratio is kept relatively

constant along the height of the structure. Uniform

drift tends to help control the premature development

of P-delta instabilities in multistory frames.

• The sequences of development of plastic hinges are

controlled in such a way as to prevent the premature

formation of plastic hinges at column supports and/or

lower story girders. The early formation of plastic

hinges at base level column supports and or lower

level beams is tantamount to replacing their rotational

restraints, by moment free hinges before the formation

of plastic hinges in other pre-designated locations

within the structure.

In the forthcoming sections first the controlled elastic-

plastic response of a generalized regular moment frame

under lateral forces is discussed and then attention is

focused on the performance of efficient moment frames

at incipient collapse.

2. The Theoretical Approach

A well proportioned or properly designed regular

moment frame, such as that shown in Fig. 1(b), subjected

to monotonically increasing lateral forces,  with an apex

value , Fig. 1(a) in combination with relatively small

constant gravity, Wi,j and axial forces Pi,j, will fail eventu-

ally in accordance with the plastic collapse pattern of Fig.

1(c). The dashed line along i = 0 represents a continuous

grade level beam that may be used to enhance the boundary

conditions of rotationally non-restricted column supports.

Here, i = 1, 2…m and j = 1, 2…n, represent locations of

story and column lines respectively. Because of the strong

column-weak beam stipulation, which is the fundamental

condition of the current presentation, the last intact seg-

ment of the frame, prior to total collapse, will be either a

fixed base multistory column or a similar column with at

least one outrigger beam as depicted in Figs. 3(b) or 3(c).

In either case the structure is reduced to a statically deter-

minate system with one more plastic hinge to form before

becoming a mechanism. Once the location of the last pla-

stic hinge is established, the maximum lateral displace-
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ments of the frame can be computed manually by the use

of standard methods of structural analysis. The maximum

lateral displacements of the moment frame at incipient

collapse can be studied by computing the corresponding

displacements of the last stable column at the onset of

plastic failure. If the tributary shear force and the sum of

the beam plastic moments acting on joint i,j of the last

stable column, can be expressed as Vi and = =

+  respectively then the corresponding free

body diagram and the moment tree may be depicted as in

Figs. 2(a) and 2(b). The full dots • indicate locations of

plastic hinges at beam ends only. The hollow circles show

locations of formation of plastic hinges at fixed base co-

lumn feet without grade beams respectively. In Fig. 2(b)

Mm =  and M0 =  represent the total external joint

moments acting on top of the uppermost and the base of

the lowermost columns respectively. In the same figure,

Mi,l and Mi,u are the lower and upper end moments res-

pectively of  olumn i located between joints i and i−1.

 is the plastic moment of resistance of the last stand-

ing beam at sth level. L and IS are the span length and the

moment of inertia of the sth level beam that may contain

the very last plastic hinge forming within the frame. hi

and Ji stand for the height and moment of inertia of the

ith level column respectively.

2.1. The effects of the column over-strength factor λ

In a well proportioned moment frame under lateral load-

ing, as illustrated in Figs. 2(c) and 3(g), the acting column

tree end moments are equal (Grigorian, 2011), i.e.,

 for i > 1 (1)

and 

where, λ1 is the over-strength factor of the first level

fixed base columns. Similarly if J1 or Jm is known, then

Ji can be determined from the proportionality relationships;

 and (2)

 or 

The strong column-weak beam condition requires that;

for all i > 1 (3)

λi > 1 is the column over-strength factor and serves two

important purposes. Most commonly it is used to prevent

soft story failure for levels 2 and above. In addition, it

may be utilized to control the sequence of formation of the

plastic hinges and/or to prevent the premature formation

of the plastic hinges at the fixed column bases. Obviously,

λ1 > λ can force the last sets of plastic hinges to form at

the fixed column bases. And, if all columns of the frame,
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Figure 1. (a) Lateral loading, (b) Moment frame, (c) Failure pattern, (d) Effects of λ1 on θ1.

Figure 2. (a) Column tree, (b) Generic moment diagram, (c) Idealized moment distribution (d) Unit load moments.
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except those at level 1, are to remain elastic in accordance

with the pre-designated mechanism of Fig. 1(c), then the

plastic moments of resistance of the column should be sel-

ected as; =  for i = 1 and =  for all

other i. However, since  never reaches  for i > 1,

the corresponding λi does not appear in the forthcoming

computations.

2.2. The Generalized displacement function

Assuming that the column is kinematically stable until

the formation of the last plastic hinge, which may occur

either at the ends of the sth level beam or at the fixed column

feet, then the generalized elastic-plastic lateral displace-

ments of joint i of any such column, regardless of the

boundary support conditions, may be computed by per-

forming the virtual work summation, using Figs. 2(c) and

2(d), over the height of the column;

(4)

where, fr is the virtual bending moment at joint r due to

the unit load applied in the same sense and location as the

desired displacement. Since at the onset of collapse, the

last plastic hinge associated with rotation ϑ is just for-

ming, it may be set to zero to compute the desired dis-

placement (Hayman, 1971; Horne, 1979). Considering the

generalized distribution of bending moments of Fig. 2(b)

and the distribution of the virtual moments of Fig. 2(d),

the required displacement equation of the subject column

at incipient collapse may be formulated as;

(5)

where fr = 0 for < hr and fr = − hr for ≥ hr.

Ur = 1 − Pi /Pcr,i and Us = 1 − Ps /Pcr,s are the moment mag-

nifying or capacity reduction factors due to the P-delta

phenomenon (Horne, 1965). Pcr,i is the critical load asso-

ciated with the segment i of the same column. Eq. (5) is

ideally suited for manual as well as spreadsheet computa-

tions and may be utilized to compute ∆i for any combina-

tion of sequence of formation of plastic hinges and boun-

dary support conditions, provided that the entire column

remains kinematically stable until and up to the onset of

plastic collapse. However, in using Eq. (5), the following

boundary conditions should be observed;

For fixed base columns; λ > 1 and Is=0 = ∞, for pinned

base supports; = 0, ∞ > Is > 0, I0 = 0 and s ≥ 1 and

for GBS columns; λ > 1, ∞ > I0 > 0 and s = 0. Informa-

tive accounts of manual methods of displacement analysis

at incipient collapse may be found in (Beedle, 1958) and

(Hayman, 1961, 1971).

2.2.1. Example1. Verification test 1

Derive the tip displacement of an upright cantilever

subjected to forces V and P at its free end. Solution: i = r

= 1, h1 = h, J1 = J, = f1 = 0, = −Fh, f0 = h and

U1 = U = 1 − P/Pcr,1, where Pcr,1 = 3EJ/h2. Eq. (5) gives, as

expected; ∆ = Fh3/3EJU.

3. Fixed Base Column Supports

The validity of Eq. (5) has been verified by long hand

as well as computer analysis. Since the majority of multi-

level moment frames subjected to lateral loading are

designed with fixed column supports, attention is focused

first on fixed boundary support condition and then on

pinned and GBS columns. The proceeding presentation is

greatly simplified, without loss of generality, by selecting

mathematically expedient and traceable structural models

and loading functions.

3.1. Lateral displacement of well proportioned moment 

frames with fixed base columns

Consider the lateral displacements of a well designed,

m × n, moment frame that satisfies both the minimum wei-

ght as well as efficient frame design conditions. For an effi-

cient or well proportioned moment frame; Ji,0 = Ji,n = Ji and

Ji,j = 2Ji for all other j. Similarly; = = , Fi,0

= Fi,n = /2n, and, =  and Fi,j = Fi/n for all other

j. Ii,j = Ii and = . The plastic demand-capacity ratios

of a well proportioned interior column tree of a fixed base

moment frame may be expressed (Grigorian, 2012a) as;

 for i = 1 and (6)

 for all other i

It may be noted that Vihi = 4n  is the plastic racking

moment of the imaginary subframe of level m ≥ i > 1. Sub-

stituting for = , =  and =

=  for r > 1 in Eq. (5), it gives;

(7)

Note that because of implementation of the strong

column-weak beam condition, λi, which is the inherent

column over strength factor for the upper level columns,

(i > 1) does not appear in Eqs. (5) and (7). In fixed base

moment frames, the drift angle due to racking effects is

generally a maximum near the base and a minimum near

the top (Taranath, 1998; Grigorian, 2012c). This implies

that it would be prudent to prevent the possibility of

premature formation of plastic hinges at the feet of the

base level columns. It has been shown (Grigorian, 2012e)
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that in order to prevent early formation of plastic hinges

at column feet, the over strength factor λ1 for base level

columns, should be selected in accordance with the rule

of minimum relative stiffness;

(8)

where, ρ1 = I1h1/LJ1. Similar sets of closed form solu-

tions describing the response of efficient moment frames

with pinned and GBS boundary conditions are presented

under separate headings below.

3.1.1. Example 2. Verification test 2

Verify the accuracy of the maximum plastic displace-

ments of the 3 story fixed base moment frame with column

forces and properties summarized in Table1 below. Let Ui

= 1, F = 133.446 kN, h = 3.048 m, J = 2348.02 × 106 mm4

and E = 200,000 MPa. The computations of the basic quan-

tities required to complete the solution are presented in

Appendix1. The corresponding plastic moment distribution

is shown in Fig. 3(f).

Solution: Next, substituting from Table 1 into Eq. (7), it

gives;

+

,

+

,

=

.

The results of verification test 2 are in complete agree-

ment with computer generated data reported in the last two

columns of Table 1.

3.2. Inter-story drift control for fixed base column 

supports

Inter-story DS is generally caused by the differences in

the relative stifnesses of the members of vertically adjacent

sub-frames. The effects of DS on the lateral displacements

of moment tree at incipient collapse may best be studied

by formulating the response of a regular frame with hi = h

and Ui = U under a triangular distribution of lateral forces

defined by the force function Fi = F × i/m. For equal hei-

ghts (fr−1 − fr) = hr, f0 = mh and f1 = (m − 1)h. Eq. (7) yields;

(9)

The bending moment distribution of the subject moment

tree under triangular distribution of lateral forces can be

expressed (Grigorian, 2013) as;

 for m = 1 (10)

and  for m = 0

(11)

for m ≥ i > 1

An effective way to reduce inter-story DS is to select

the properties of the elements of the structure in accord-

ance with member specific rules of proportionality. This

may be achieved by imposing uniform demand-capacity

ratios for members of similar groups such as beams and

columns of the same sub system. E.g., the variation of the

moments of inertia Ii of the beams and Ji of the columns

may be related to their bending moments through Eq. (2)

above. This causes the members of the frame to behave

as part of a structure of uniform response (Grigorian,

2013). However, if the demand-capacity ratios of the

columns are the same, then the summation term of Eq. (9)

may be simplified as;

(12)

Eq. (9) may now be expressed in its simplest form as;

(13)

3.3. Drift control and DS due to fixed boundary 

support conditions

Eq. (13) suggests that while the drift function φi = φ2
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Table 1. Loading and properties, fixed base frame

i Fi Vi hi Mi Ji λi fr,i=3 fr,i=2 fr,i=1 ∆i δ i
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may be constant for m ≥ i ≥ 1, it could become discontinu-

ous at i = 1, e.g. the blue and black curves, Fig. 1(c). The

differential drift angle at i = 1 is caused by the differences

in the rigidities of the two ends of the fixed based co-

lumn. DS or the difference between the drift ratio and the

top end rotation of the base level column can be com-

pared by computing the drift angle φ1 and the tip rotation

θ1 of the base level column, thus;

, (14)

 and 

where, ψ2 is the local or inter story drift angle of the

second level column (Grigorian, 2012e). The effects of λ1

on θ1 are depicted in Fig. 1(d). For the sake of clarity

assume Ui = 1 throughout the forthcoming discussions. It

may be instructive to note that, contrary to common belief,

the over strength factor λ not only effects the sequence of

formation of the plastic hinges, but also the magnitude of

the plastic displacements. It may be seen from the group

of Eqs. (14) that the maximum column rotation θ1 at the

onset of failure is comparable in magnitude with the cor-

responding drift angle φ1, and as illustrated in Fig. 1(d).

This causes the drift angle of the upper levels to increase

from ψ2 to ψ2 + θ1, and implies that the relative rigidities

of the support level fixed base column control the drift

angles of the entire structure during elastic as well as pla-

stic phases of bending. In other words, the stiffer the base

level column, the more flexible and probably the more eco-

nomical the upper level columns. Note that θ1 is always

larger than zero for all values of λ > 1 and J1 ≠ ∞. Zero

shifting, which is an ideal condition occurs at λ1 = λideal = 2,

i.e., when θ1 = φ1, otherwise, θ1 is always larger than φ1
for all values of λ1 > 2. The purpose of this section is to

generate enough data in order to verify the validity and

the accuracy of the proposed formulations. The best way

to achieve this is to compare the results of the Eq. (5) and/

or (13) against that of the ideal drift profile. The most

ideal drift profile is a straight line or combinations of stra-

ight lines with λ1 < 2, that satisfy the target displacement

limits at specific load levels, i.e.,

(15)

The case of an ideal drift profile is further examined in

the following example.

3.3.1. Example 3. Drift control for a fixed base frame

Determine the column moments of inertia Ji of an m =

10 story, regular, efficient moment frame with F = 133.446

kN, φ1 = 0.0025 < 0.0033 rad, hi = 3.048 m., Ui = 1 and λ1

= 2.5, provided that the maximum inter-story drift ratio φi
does not exceed = 0.0033 rad. Solution: Anticipating

higher drift ratios for the upper levels, since λ1 = 2.5 >

λideal, the required drift ratio for the base level column

may now be selected as say φ1 = 0.0025 < 0.0033 radians.

Using Eqs. (10) and (14) to estimate an initial value for

the first level column moment of inertia J1, it gives; 

= (10+1) × 133.446 × 3.048/2(2.5+1) = 639.168 kN-m, J1
= (2 × 2.5−1) × 639.168 × 3.048 × 109/6 × 200000 × 0.0025

= 2597.5788 × 106 mm4 and θ1 = (2.5−1) × 639.168 × 3.048

× 103/2 × 200000 × 2597.5788 × 106 = 0.002813 radians.

Next, if the drift ratios of the upper stories are to be

maximized such that φi = φ2 = = 0.0033 rad. then the

local drift angles of the upper levels would be given by;

ψi = ψ2 = φ − θ1 = 0.0033−0.002813 = 0.000487 rad.

Since, J10 = h10/2Eψ10 = 203.372 × 3.048 × 109/6 ×

200000 × 0.000487 = 1060.7082 × 106 mm4, then Eqs. (2)

and (11) may be combined to give;

(16)

The drift line Eq. (15) gives; ∆10 = [φ1 + (m−1)φ1]h =

[0.0025+(10−1) × 0.0033] × 3.048 × 103= 98.146 mm. The

proposed drift Eq. (13) based on material properties of the

moment tree yields;

∆10 =

+

This implies that Eq. (5) and its special case, Eq. (13),

are exact within the bounds of the theoretical assumptions.

4. Pinned Base Column Supports

Consider the lateral displacements of a properly desi-

gned, efficient, pinned base moment frame such as that

shown in Fig. 3(b), with the last set of plastic hinges for-

ming at the ends of the sth level beam. The object of this

exercise is to study the effects of pinned column supports

on the roof level displacements at incipient collapse. The

corresponding plastic bending moment and the unit load

moment distributions are depicted in Figs. 3(d) and 3(e),

respectively. The generalized displacement Eq. (5) may

now be customized for pin supported columns as;

+ (17)

Furthermore, if the distribution of the lateral forces is

defined by Fi = F × i/m, then for the unit virtual load
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applied at the roof level; fs,u = H, (fr−1−fr) = hr for r > s,

(2fr + fr−1)=(3r − 1)hr for r ≤ s and Eq. (17) becomes;

(18)

In pin supported moment frames, the drift angle due to

racking effects is also a maximum near the base and a

minimum near the top. Therefore, it would be prudent to

try to prevent the premature formation of plastic hinges at

the ends of the lower level girders. Eq. (18) provides a

simple means of observing the effects of formation of

plastic hinges at the ends of the first level column beams

just before the structure becomes a mechanism. For

instance if i = m, s = 1 and hi = h for i > 1 and Ui = U for

all i, then Eq. (18) yields the corresponding roof level

maximum displacement as;

(19)

4.1. Example4. Verification test 3

Derive the lateral displacement formula of a pin sup-

ported portal frame subjected to a roof level forces V and

column axial loads P. Solution: Putting m = s = r = i = 1

in Eq. (19) and rearranging, it results in the well known

formula (Klienlogel, 1952; Davison, 1993; Grigorian, 1993).

 and (20)

4.2. Inter-story drift control for pinned base column 

supports

The plastic bending moment distributions of the pinned

base moment tree can be expressed as;

(21)

for s ≥ 1

(22)

for m ≥ i ≥ s

(23)

for s ≥ i ≥ 1, 

The variations of the beam and column moments of

inertia Ii and Ji in the range m ≥ i ≥ 1 are the same as those

given by Eq. (2). However for reduced DS due to pinned

base boundaries I1 and J1 may best be selected as;

, (24)

and 

Obviously a similar set of similar equations can be deri-

ved for closed loop modules resting on top of a supporting

fixed base portal frame.

4.3. Drift control and DS due to pinned support 

conditions

The DS phenomenon for pin based columns may best

be studied by rearranging Eq. (14c) as;

(25)

 =

It is evident that the magnitude of ∆m is affected appre-

ciably by the DS angle θ1. DS is usually most pronounced

at the top end of base level columns. DS for pin sup-

ported moment frames can also be studied by computing

the drift angle φ1 and the tip rotation θ1 of the base level

column of a single bay pinned base portal frame under a

lateral force V and axial column loads P as expressed by
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Figure 3. (a) Fixed base column, (b) Pinned base column and last stable beam, (c) GBS column, (d) Moment tree for
case b, (e) Unit load moments for case b, (f) Moment tree of example 2, (g) Moment tree of example 7.
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Eq. (20). It may be observed that θ1 is always smaller than

φ1 for pin supported columns and that the best case scena-

rio corresponds to the unlikely condition J1 = ∞. In con-

clusion, in order to reduce the effects of DS on the lateral

displacements of the upper level columns I1 should be

selected so that φ2 = (θi + ψ2) is a practical minimum.

4.3.1. Example5. Verification test 4

Verify the accuracy of the computer generated displace-

ments of the 3 story moment tree of Fig. 3(b), with pinned

supports, as detailed in Table 2. Assume that the last pla-

stic hinge forms at the first level beam ends. Given;

J1 = J = 8455.0588 × 106 mm4, I3 = J/6, P = 0 and L =

2h = 6.096 m. Solution: The group of Eqs. (21) through

(24), give; J3 = [(Fh/2)h / 2(3Fh)(3h/2)]J = J/18, J2 = [(5Fh/

6)h / 2(3Fh)(3h/2)]J = 5J/54, I1,u = [3Fh+5Fh/6]I3 / (Fh/2)

= 23/3 I3, and I1 = 3Fh×(23I3/3) / (3Fh+5Fh/6) = 6I3 =

8455.1587 × 106 mm4. Substituting from Table 2 into Eq.

(25), it gives;

4.3.2. Example6. DS in a pin supported portal frame

Study the plastic DS phenomenon associated with the

pinned base moment frame of example 5 above. Solution:

Observing that I1 = J and substituting from Table 2 into

Eqs. (25), it gives;

,

θ1 = 3Fh×2h / 6EJ = 0.000733 radians and φ1 = δ1/h1 =

8.38/4572 = 0.001833 rad. This gives the relevant drift

shift as φ1 − θ1 = 0.0011 rad. However, since Ii and Ji were

selected in such a way as to enforce a uniform drift defined

by φ1 = φ1 = φ3 and θ1 = θ1 = θ3, then the effects of the

first level DS were automatically normalized by enforcing

φi − θi = constant along the height of the frame.

5. Grade Beam Supported Columns

While plastic DS can not be avoided for pinned and

fixed boundary conditions, GBS systems offer practical

means of reducing, even eliminating differential changes

between the drift ratios of first and second as well as

other story level junctions. The governing roof level

displacement equation for the particular case under study

may be formulated by substituting s = 0 in Eqs. (17) or

(18), thus;

(26)

θi = θ1 is a particular property of well proportioned/

efficient GBS frames for all column segments, i.e., θi+1 −

θi = 0 for all i. Therefore, DS is zero along the height of

the structure. The variations of the beam and column

moments of inertia Ii and Ji in the range m ≥ i > 1 are the

same as those given by Eq. (2). However, in order to

achieve zero DS, the boundary elements I1 and J1 should

be selected in accordance with the following rules of

proportionality;

 and (27)

5.1. Example7. Drift control for a GBS moment frame

Compute the section properties of the 3 story GBS mo-

ment tree of Table 3 in such a way that the entire structure

rotates through a constant drift angle; φ ≤ 0.0022 rad. at

incipient collapse. The corresponding plastic moment dis-

tribution is shown in Fig. 3(g). Eq. (26) indicates that the

solution to an imaginary single story single bay GBS mo-

ment frame may be expressed as;
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Table 2. Loading and properties, pinned base frame

i Fi Vi hi Mi Ji λi fr,i=3 fr,i=2 fr,i=1 ∆i δ i

3 F F h Fh/2 Fh/2 J/18 1.1 0 0 0 19.56 5.59

2 2F/3 5F/3 h 5Fh/6 4Fh/3 5J/54 1.1 h 0 0 13.97 5.59

1 F/3 2F 3h/2 3Fh 23Fh/6 J 1.1 2h h 0 8.38 8.38

B - - 3h/2 3Fh - - 1.0 7h/2 5h/2 3h/2 - -

Mi
P

Table 3. Loading and properties, grade beam supported frame

i Fi Vi hi Mi Ji Ii fr,i=3 fr,i=2 fr,i=1 ∆i δ i φ i

3 F F h Fh/2 Fh/2 2J/9 2I/9 0 0 0 24.659 7.043 φ

2 2F/3 5F/3 h 5Fh/6 4Fh/3 10J/27 16I/27 h 0 0 17.616 7.043 φ

1 F/3 2F 3h/2 3Fh/2 7Fh/3 J 37I/27 2h  h 0 10.564 10.564 φ

B - - 0 3Fh/2 3Fh/2 - I 7h/2 5h/2 3h/2 - -

Mi
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 and (28)

It follows therefore that J1 = 2(3Fh/2)(3h/2)/6E × 0.9 ×

0.0022 = 2348.02 × 106 mm4 and that I3 = J3 = J1/4.5 and

I = J = J/4.5. Since the plastic moments of resistance and

moments of inertias of the members of the frame were

selected in accordance with the same demand-response

ratio then the structure would collapse through simulta-

neous formation of plastic hinges at all beam ends and

would deform in accordance with a linearly varying drift

profile defined by;

(29)

The numerical results of Eq. (29), as verified by com-

puter analysis have been summarized in Table 3.

6. Comparison of Boundary Effects between 
Fixed, Pinned and Grade Supported 
Frames

The relative merits and characteristics of fixed, pinned

and grade beam supported moment frames e briefly dis-

cussed in the following two sections

6.1. Comparison of boundary effects between fixed 

and grade supported frames

A comparison of the lateral displacements of examples

2 and 7 reveals that the lateral displacements of well

proportioned GBS moment frames, ∆3,grade = 24.659 mm,

could be smaller than those of identical frames with fixed

boundary supports, ∆3,fix = 27.165 mm. In order to formally

compare the effects of the three sets of boundary support

conditions on the same structure, consider the performance

of a single bay, m story efficient moment frame with uni-

form drift φi = φ above level one, under any distribution

of monotonically increasing lateral forces. Let for simpli-

city sake hi = h, h1 = h1, V1 = V and Ui = U for both sets of

support conditions. First, consider the case of a GBS

frame with ρ1 = 1 and constant drift φi = φ1 = φ along the

height of the entire frame. Using Eq. (28) the magnitude

of φ1 and the roof level displacement, in terms of J1,grade
and V may be expressed as;

(30)

and 

Next, if the same frame is to be supported on fixed

column supports, then the corresponding roof level dis-

placement may be computed by substituting ψ = φ in Eq.

(15), i.e.;

(31)

Eliminating ∆m from Eqs. (30) and (31), and substituting

for φ1 and θ1 from Eq. (14), it gives;

(32)

as the equivalent moment of inertia of the first floor

columns for reduced DS. Naturally, as the number of

stories increase, so do the magnitudes of the base level

column section inertias to counteract the effects of the

DS. In order to further study the relationship between J1,fix
and J1,grade, consider the applications of Eq. (32) to a single

bay portal frame. For m = 1, Eq. (32) reduces to;

(33)

A graphic interpretation of Eq. (33) in terms of the main

variables λ and ρ, and the limiting vales of λmin is presen-

ted in Fig. 4. The solid lines to the right and above the
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λmin curve represent the permissible combinations of λ and

ρ that can be used to determine J1,fix in terms of J1,grade. It

may be observed that for ρ1 > 0.5, J1,fix is consistently

larger than J1,grade. This implies that as far as DS is con-

cerned, the GBS system may actually result in more desi-

rable, even more economical structure than fixed bas sup-

ported frames.

6.2. Comparison of boundary effects between pinned 

and grade supported frames

Next, compare the response of a pin supported frame

with constant drift φi = φ with that of an equivalent grade

beam supported system. Eq. (31) may be used in conjunc-

tion with Eqs. (20) to determine the required magnitude

of J1,pin in terms of J1,grade as

(34)

The relationship between J1,pin and J1,grade may be further

studied by putting m = 1 in Eq. (34), thus;

(35)

Note that because of doubly symmetry both the grade

beam and the pin supported portal frames may be treated

as statically determinate structures and that their displace-

ments at incipient collapse are independent of the corres-

ponding column over strength factors.

7. Conclusions

There is still scant information on simple methods to

study the lateral displacements of sway frames at incipient

collapse. The studies carried out in this research program

provided some useful results for the preliminary design of

moment frames. Such studies may also be used for higher

educational purposes. It was demonstrated that otherwise

complicated task of computing maximum lateral displace-

ments for well designed moment frames at incipient col-

lapse can be reduced to the use of simple formulae for

pinned, fixed and GBS boundary conditions. It was shown

that pinned and fixed boundary support conditions are

more likely to cause kinks or DS at the first level junctions

of multilevel frames than similar GBS structures, and that

drift shifting tends to increase the lateral displacements of

the upper levels of the frame by the same order of magni-

tude as the racking drift ratios of the upper level sub

frames. It was also demonstrated that GBS boundary con-

ditions offer practical means of elimination and/or reduc-

tion of DS along the height of the frame as well as preven-

ting the premature formation of plastic hinges at column

supports. The proposed solutions satisfy the prescribed

yield criteria, equilibrium and boundary support conditions

and as such, they can not be far from minimum weight

design.

In the interim, several parametric as well as numerical

examples were presented to demonstrate the applications

of the proposed formulae. It was suggested that the find-

ings of the present article are particularly applicable to per-

formance based plastic design of wind and earthquake

resistant moment frames. It was also shown that the over

strength factors not only affect the sequence of formation

of plastic hinges, but can also influence the magnitude of

the plastic displacements. The proposed formulations are

exact within the bounds of the theoretical assumptions and

accurately predict the results of long hand and computer

generated solutions. The proposed methodology lends itself

well to manual as well as spreadsheet computations. A

similar approach can be employed to study DS in braced

frameworks and similar structures.

Appendix 1, Basic computations for example 2

Acting moments Mi = Vihi / 2 for i > 1 and =V1×h1 /

2(1+λ) = (2F)×3h / 2(2+1) = Fh were computed using Eq.

(1). Column sectional inertias; J2 = ( / ), J1 =

(5Fh/6)×h2J / (Fh)×(1.5h)2 = 10J/27 and J3 =(Fh/2)×h2J /

(Fh)×(1.5h)2 = 2J/9 were computed using Eq. (2).
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