• Title/Summary/Keyword: Efficient Design Procedure

Search Result 374, Processing Time 0.033 seconds

Automated nonlinear design of reinforced concrete D regions

  • Amini Najafian, Hamidreza;Vollum, Robert L.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.91-110
    • /
    • 2013
  • This paper proposes a novel iterative procedure for the design of planar reinforced concrete structures in which the reinforcement is designed for stresses calculated in a nonlinear finite element analysis. The procedure is intended as an alternative to strut and tie modeling for the design of complex structures like deep beams with openings. Practical reinforcement arrangements are achieved by grouping the reinforcement into user defined horizontal and vertical bands. Two alternative strategies are proposed for designing the reinforcement which are designated A and B. Design constraints are specified in terms of permissible stresses and strains in the reinforcement and strains in the concrete. A case study of a deep beam with an opening is presented to illustrate the method. Comparisons are made between design strategies A and B of which B is shown to be most efficient. The resulting reinforcement weights are also shown to compare favorably with those previously reported in the literature.

Design of Reformate Fractionation Process with Thermally Coupled Distillation Column (Reformate 분리공정에서의 열복합 증류탑 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2445-2450
    • /
    • 2011
  • Design of reformate fractionation process using a fully thermally coupled distillation is conducted with commercial design software Aspen HYSYS. Detailed procedure of the design is explained, and the performance of the process is compared with that of a conventional system. The design outcome indicates that the procedure is simple and efficient. The performance of the new process indicates that an energy saving of 12.2% is obtained compared with the conventional process while total number of trays maintains at the same.

Noise Assurance Plan in the Project for Design a New Rolling Stock (철도차량 개발과정에서의 소음관리방안)

  • 정경렬;김경택;이병현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.542-548
    • /
    • 2003
  • This paper describes an overall Noise Assurance Plan(NAP) in the project for developing a new rolling stock. In this paper, the procedure for implementing noise control activities for each development stage on the basis of the NAP is also described. The NAP was developed by KITECH(Korea Institute of Industrial Technology) and ODS(${\Phi}$degaard & Danneskiold-Samsoe in DENMARK). Generally, the main objective of NAP is that noise assurance plan applies to the establishment of organization and personnel's roles and responsibilities, set-up of overall procedure and internal audit program. Here, a few comments are made to the deviations of the actual procedure(G7 Project) relative to the suggested NAP presented. The major difference between the suggested NAP and the actual procedure was the late involvement of the noise consultant resulting in suggestions for design improvements could not be implemented due to the advanced stage of the design. Similarly, the important task of preparing sub-supplier specifications was performed. The proposed NAP will be an efficient tool for noise management in the R&D project for new rolling stock. Specially, in case that several companies and institutes are involoved in the R&D team

  • PDF

Analysis of R/C frames considering cracking effect and plastic hinge formation

  • Kara, Ilker Fatih;Ashour, Ashraf F.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.669-681
    • /
    • 2017
  • The design of reinforced concrete buildings must satisfy the serviceability stiffness criteria in terms of maximum lateral deflections and inter story drift in order to prevent both structural and non-structural damages. Consideration of plastic hinge formation is also important to obtain accurate failure mechanism and ultimate strength of reinforced concrete frames. In the present study, an iterative procedure has been developed for the analysis of reinforced concrete frames with cracked elements and consideration of plastic hinge formation. The ACI and probability-based effective stiffness models are used for the effective moment of inertia of cracked members. Shear deformation effect is also considered, and the variation of shear stiffness due to cracking is evaluated by reduced shear stiffness models available in the literature. The analytical procedure has been demonstrated through the application to three reinforced concrete frame examples available in the literature. It has been shown that the iterative analytical procedure can provide accurate and efficient predictions of deflections and ultimate strength of the frames studied under lateral and vertical loads. The proposed procedure is also efficient from the viewpoint of computational time and convergence rate. The developed technique was able to accurately predict the locations and sequential development of plastic hinges in frames. The results also show that shear deformation can contribute significantly to frame deflections.

A new method for ship inner shell optimization based on parametric technique

  • Yu, Yan-Yun;Lin, Yan;Chen, Ming;Li, Kai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.142-156
    • /
    • 2015
  • A new method for ship Inner Shell optimization, which is called Parametric Inner Shell Optimization Method (PISOM), is presented in this paper in order to improve both hull performance and design efficiency of transport ship. The foundation of PISOM is the parametric Inner Shell Plate (ISP) model, which is a fully-associative model driven by dimensions. A method to create parametric ISP model is proposed, including geometric primitives, geometric constraints, geometric constraint solving etc. The standard optimization procedure of ship ISP optimization based on parametric ISP model is put forward, and an efficient optimization approach for typical transport ship is developed based on this procedure. This approach takes the section area of ISP and the other dominant parameters as variables, while all the design requirements such as propeller immersion, fore bottom wave slap, bridge visibility, longitudinal strength etc, are made constraints. The optimization objective is maximum volume of cargo oil tanker/cargo hold, and the genetic algorithm is used to solve this optimization model. This method is applied to the optimization of a product oil tanker and a bulk carrier, and it is proved to be effective, highly efficient, and engineering practical.

Methods of Design Optimality Evaluation for Caisson Structural Systems (케이슨 구조계의 설계 최적성 평가)

  • Choi Min-Hee;Ryu Yeon-Sun;Cho Hyun-Man;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

Sensitivity Analysis using FRF-based Substructuring Method (전달함수합성법을 이용한 민감도 해석)

  • Lee, Doo-Ho;Hwang, Woo-Seok;Kim, Chan-Mook
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.602-606
    • /
    • 2000
  • A general procedure for the design sensitivity analysis of structural dynamic problems has been presented in frame of the FRF-based substructuring formulation. In the procedure, the direct differentiation method is used for the sensitivity formula. For a system response function, the proposed method gives a parametric design sensitivity formula in terms of the partial derivatives of the connection element properties and the transfer matrix of the subsystems. The derived design sensitivity formula is applied to a numerical example. The comparison of sensitivities derived by the proposed method and the finite difference method shows that the proposed method is efficient and accurate.

  • PDF

A Heuristic Method for Communication Network Design (통신망의 국간 용량 결정에 관한 발견적해법)

  • 성창섭;손진현;이강배
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.29-43
    • /
    • 1993
  • This paper condisers a problem of determining arc capacities for a communication network with fixed-charged linear arc-cost functions, which is known to be NP-hard. For the problem, an efficient heuristic solution procedure is derived. The procedure is further shown working well for designing arc capacities of a network in a situation where the network needs to be extended by connecting its nodes to some new nodes or where the network needs to be extended by expanding its arc capacities.

  • PDF

Optimal Sliding Surface using LQR Method For Design of Sliding Mode Controller (슬라이딩 모드 제어기 설계를 위한 LQR방법을 이용한 최적 슬라이딩 표면 결정)

  • 이상현;민경원;이영철;황재승
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.419-426
    • /
    • 2003
  • An efficient procedure using LQR method for determining optimal sliding surfaces appropriate for different controller types is provided. The parametric evaluation of the dynamic characteristics of sliding surfaces is peformed in terms of SMC controller performance of single-degree-of-freedom(SDOF) systems. The control force limit is considered in this procedure. Numerical simulations for multi-degree-of-freedom(MDOF) systems verify the effectiveness of proposed method.

  • PDF

An On-line Algorithm for Machine Layout Problem (기계 배치 문제의 온라인 알고리즘)

  • Wang, Gi-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.27-36
    • /
    • 1995
  • This paper covers algorithms to determine a machine assignment strategy to locations on a single straight track by minimizing the total backtrack distance. Three different algorithms ar presented: an efficient heuristic procedure, the branch-and-bound algorithm, and the nerual network approach. Simulation results show that the proposed algorithms have potential power to design an on-line optimizer.

  • PDF