• 제목/요약/키워드: Effective stiffness

검색결과 1,070건 처리시간 0.025초

단섬유 복합재료의 탄성계수 예측 (Prediction of effective stiffness on short fiber reinforced composite materials)

  • 임태원;한경섭
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.611-617
    • /
    • 1991
  • Effective stiffness of short fiber composite with a three-dimensional random orientation of fibers is derived theoretically and compared with available experimental data. The laminate analogy and transformed laminate analogy are used for modulus prediction of 2-D and 3-D random composites, respectively. The effective stiffness of random oriented fiber composite can be expressed in terms of longitudinal and transverse stiffnesses of unidirectional composites. The result of transformed laminate analogy is more accurate than other approaches such as, Christensen-Waals equational and Lavengood-Goettler equation, etc. Also the effective properties of random oriented fiber composite can be expressed in terms of fiber and matrix properties such as elastic modulus, shear modulus and Poisson's ratio.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

자동차 공기스프링의 특성에 대한 실험적 고찰 (An Experimental Investigation on the Characteristics of An Automotive Air Spring)

  • 이재천;류하오
    • 유공압시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.17-22
    • /
    • 2011
  • The analysis of an air spring characteristics is necessary to design and control automotive air suspension system properly. A mathematical model of an air spring was derived in light of energy conservation first. Then static and dynamic experiments of the air spring have been fulfilled. The static stiffness with various initial pressures and effective areas were obtained from the static experimental results. Theoretical static stiffness obtained by using the mathematical model and effective area data is in close accordance with the experimental estimation. The dynamic experimental results show that the hysteresis in displacement-force cycle decreases when the frequency of the harmonic displacement excitation signal increases, but it does not change too much as the frequency is higher than 1Hz. And the dynamic stiffness goes up with increasing of the initial pressure and the excitation frequency.

건물용 납면진받침의 의존성 평가 실험 (Experimental Study on Dependent Characteristics of Lead Rubber Bearing for Buildings)

  • 정길영;박건록;하동호;김두훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.373-382
    • /
    • 2002
  • In this paper, the characteristic dependencies of LRB(lead rubber bearing) were studied by various prototype tests on LRB for buildings. The characteristics of LRB were dependent on displacements, repeated cycles, frequencies, vertical pressures and temperatures. The prototype test showed that the displacement was the most governing factor influencing on characteristics of LRB. The effective stiffness and equivalent damping of LRB were decreased with large displacement, and increased with high frequency. After the repeated cyclic test with 50 cycles, the effective stiffness and equivalent damping of LRB were reduced by approximately 20% compared with those of the 1$^{st}$ cycle. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness.s.

  • PDF

Evaluation of Effective Stiffness for 3D Beam with Repeated Structure

  • Chung, Il-Sup
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.25-29
    • /
    • 2006
  • Analysis of structures which are composed of numerous repeated unit structures can be simplified by using homogenized properties. If the unit structure is repeated in one direction, the whole structure may be regarded as a beam. Once the effective stiffness is obtained from the analysis of the unit structure in a proper way, the effort for the detail modeling of the global structure is not required, and the real structure can be replaced simply with a beam. This study proposes a kinematical periodicity constraint to be imposed on the FE model of the unit structure, which improves the accuracy of the effective stiffness. The method is employed to a one dimensionally arrayed 3D structure containing periodically repeated unsymmetrical holes. It is demonstrated that the deformation behavior of the homogenized beam agrees well with that of the real structure.

반복 구조로 구성된 3차원 보의 유효 강성 계산 (Evaluation of Effective Stiffness for 3D Beam with Repeated Structure)

  • 정일섭
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.170-176
    • /
    • 2005
  • Analysis of structures which are composed of numerous repeated unit structures can be simplified by using homogenized properties. If the unit structure is repeated in one direction, the whole structure may be regarded as a beam. Once the effective stiffness is obtained from the analysis of the unit structure in a proper way, the effort for the detail modeling of the global structure is not required, and the real structure can be replaced simply with a beam. This study proposes a kinematical periodicity constraint to be imposed on the FE model of the unit structure, which improves the accuracy of the effective stiffness. The method is employed to a one dimensionally arrayed 3D structure containing periodically repeated un-symmetric holes. It is demonstrated that the deformation behavior of the homogenized beam agrees well with that of the real structure.

플랫 플레이트 슬래브 해석을 위한 강성감소계수 제안 (Stiffness Reduction Factor for Flat Plate Slabs)

  • 박영미;한상환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.337-340
    • /
    • 2006
  • The purpose of this study is to propose the stiffness reduction factor for flat plate slabs under lateral loads. Current design code (e.g., ACI 318-05) requires considering the effects of cracks for calculating slab stiffness under lateral loads. This study collected the test results of 20 interior slab-column connections, from which stiffness reduction in each test was estimated with respect to the ratio of applied moment to cracking moment ($M_a/M_{cr}$). Based on collected data, this study proposed equations for calculating stiffness reduction with respect to $M_a/M_{cr}$. To verify the proposed equations, this study conducted the experimental test of interior slab-column connections under quasi-static cyclic loading. From the test, load-deformation curve is compared to that obtained from effective beam width method with the proposed equation for the stiffness reduction. It is shown that the effective beam width method with the proposed equation for stiffness reduction predicts accurately the test results.

  • PDF

철근콘크리트 슬래브의 고유진동수 추정 (Estimation of Natural Frequency of Reinforced Concrete Slab)

  • 우운택
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권4호
    • /
    • pp.219-223
    • /
    • 2000
  • The evaluation of habitability to building vibration is conducted by the values of natural frequency, amplitude displacement, damping ratio. These values can be obtained from test or analytical results. Data acquisition through test may be possible in existing building, however, to estimate the serviceability of the building, it is necessary to evaluate those values at the stage of design. The natural frequency is important and basic factor for the evaluation of the serviceability. Calculation method of the effective stiffness in RC slab is proposed. To prove the efficiency of the proposed method, sample results of the analysis and the test are compared. These results proved that the effective width proposed to calculate the effective stiffness is proper to evaluate the natural frequency.

  • PDF

철근콘크리트 원형단면교각의 횡방향철근량에 관한 설계비교 (Comparative Study of Design Codes on the Transverse Steel Amount of Circular Reinfored Concrete Columns)

  • 배성용;곽동일;김희덕
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.98-103
    • /
    • 2001
  • This paper is conducted to compare the seismic design standard of a bridge column such as the Korean Bridge Design Standard(KBDS), EC 8, NZS 3101 and ATC 32. The KBDS adopted the seismic design requirements in 1992. The earthquake magnitude in Korea is compared with those in the west coast of the USA. It may be said that the current seismic design requirements of the KBDS provides design results, that are too conservative especially for transverse reinforcement details and amounts in reinforced concrete columns. This fact usually creates construction problems in concrete casting, due to congestion of transverse reinforcement. Furthermore, the effective stiffness; $I_{eff}$ depends on both the axial load P/$A_gF_{ck}$ and the longitudinal reinforcement ratio $A_{st}/A_g, so it is the conservative to use the effective stiffness I$_{eff}$ than the gross section stiffness Ig. Seismic design for the transverse reinforcement content of the concrete column was analyzed and considered to have an extreme-fiber compression strain, response modification factor, axial load and effective stiffness etc.c.

  • PDF

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.