• Title/Summary/Keyword: Effective Strain

Search Result 1,779, Processing Time 0.032 seconds

Taxonobic Characteristics of Strain Producing MR-387A and B,New Inhibitors of Aminopeptidase M,and their Production (신규의 Aminopeptidase M 저해제 MR-387A와 B를 생산하는 균주의 동정 및 저해제의 생산)

  • Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Ho-Jae;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.447-452
    • /
    • 1994
  • The strain SL-387 which produces new inhibitors of aminopeptidase M, MR-387A and B, was isolated from a soil sample. The strain has branched substrate mycelia, from which aerial hyphae develop in the form of open spirals. Spore surface is smooth. Melanoid and soluble pigme- nts were observed. The isolate contains LL-diaminopimelic acid in its cell wall hydrolysate, and has no pectinolytic activity. The strain SL-387 is closely related to Streptomyces griseoruber and S. naganishii, but is different from these strains in some cultural and physiological characteristics. This strain was, therefore, designated as Streptomyces sp. SL-387. The effects of several carbon and nitrogen sources on the production of the inhibitor were examined. Among them, glucose, galactose, mannose, and xylose were effective as a carbon source and soybean meal, soytone, fish meal, and gluten meal were effective as a nitrogen source. The maximum peak of the inhibitor production in jar fermentor was obtained on the fifth day of culture.

  • PDF

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Isolation and Identification of Oxygen Resistant Bifidobacterium sp. from Korean and its Characteristics (한국인의 분변으로부터 내산소성 균주의 분리, 동정 및 분리 균주의 특성)

  • 안준배;이계호;박종현
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.122-126
    • /
    • 1997
  • Bifidobacteria have been known as beneficial inhabitant of human intestine. Therefore, bifidobacteria began to be noticed as a starter in the manufacture of fermented dairy products. Perhaps the key for effective use of bifidobacteria in commercial dairy products is the maintenance of viability of bifidobacteria during large scale preparation of starter culture and distribution of products. So we tried to obtain the bifidobacteria having suitable characteristics for using as a starter in the manufacture of fermented dairy products. Among bifidobacteria isolated from Korean, E-4 strain showed the highest resistance to oxygen. To know whether the selected strain will be fit for manufacture of fermented dairy products, we also investigated resistance of the selected strain to HCI. The selected strain, E-4, was more resistant to environmental stresses such as oxygen, H2O2 and HCI than Bifidobacterium longum known as resistant strain to environmental stresses. According to carbohydrate fermentation patterns and morphological characteristics, E-4 strain was identified as B. bifidum. In conclusion, the selected strain, E-4, was thought to be fit for manufacture of fermented dairy products.

  • PDF

Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials (미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가)

  • 이승표;정재연;하성규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.

Effect of Inner Pressure on the Plastic Deformation Behavior of Seamless Pipe Deformed by Compression Process (압축 가공된 비용접 배관의 소성변형 거동에 미치는 내압의 영향)

  • Seo, W.G.;Lee, M.S.;Son, S.J.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.175-182
    • /
    • 2019
  • In this study, compression process is performed on the seamless E235 pipe using the newly developed compression technology for seamless pipe. Experimental analysis on the heterogeneity of microstructures and mechanical properties of the deformed seamless pipe is conducted. As a result, the correlation between microstructures and mechanical properties are determined. The spatial distribution of effective stress and effective strain developed in the seamless pipe deformed through compression is analyzed using the finite element method (FEM) based on different inner pressure conditions. From the results of the FEM, the impact of the inner pressure on effective stress and effective strain of the seamless pipe deformed through compression can be understood theoretically.

Developing Liquid Cooling Garments to Alleviate Heat Strain of Workers in Summer and Exploring Effective Cooling Temperature and Body Regions (여름철 작업자들의 고체온증 예방을 위한 액체냉각복 개발 및 효과적인 냉각온도와 인체 냉각부위 탐색)

  • Jung, Jae-Yeon;Kang, Juho;Seol, Seonhong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.250-260
    • /
    • 2020
  • The purpose of the present study was to explore the most effective body region and cooling temperature to alleviate heat strain of workers in hot environments. We developed liquid cooling hood, vest, sleeves and socks and applied the water temperatures of 10, 15, 20, and 25℃ through the liquid cooling garments in a hot and humid environment (33℃ air temperature and 70% RH air humidity). A healthy young male participated in a total of 16 experimental trials (four cooling garments × four cooling temperatures) with the following protocol: 10-min rest, 40-min exercise on a treadmill and 10-min recovery. The results showed that rectal temperature, mean skin temperature, and ratings of perceived exertion during exercise; heart rate and diastolic blood pressure during recovery; and total sweat rate were lower for the vest condition than other garment conditions(p < .05). However, there was no differences in mean skin temperature among the four cooling garments when we compared the values converted by covering area(%BSA). When we classified the results by cooling temperature, there were no consistent differences in thermoregulatory and cardiovascular responses among the four temperatures, but 25℃ water temperature was evaluated as being the most ineffective cooling temperature in terms of subjective responses. In conclusion, the results indicated that wearing cooling vest with < 20℃ cooling temperature can alleviate heat strain of workers in hot and humid environments. If the peripheral body regions are cooled with liquid cooling garments, larger cooling area with lower cooling temperature than 10℃ would be effective to reduce heat strain of workers. Further studies with a vaild number of subjects are required.

Condition assessment for high-speed railway bridges based on train-induced strain response

  • Li, Zhonglong;Li, Shunlong;Lv, Jia;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.199-219
    • /
    • 2015
  • This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

AUTOMOTIVE FORMABILITY SIMULATION PROCESS FOR EARLY DESIGN PHASES

  • EL-SAYED J.;KIM H.;FRUTIGER R.;LIU W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.277-283
    • /
    • 2005
  • Formability simulation of automotive panels at early design phases can reduce product and tooling development time and cost. However, for the simulation to be effective in leading the design process, fast and reliable results should be achieved with limited design definition and minimum modeling effort. In this paper, nonlinear finite element analysis is used to develop an automated process for the formability simulation of automotive body panels at early design phases. Due to the limited design definition at early design phases, the automated simulation process is based on the plane strain analysis for selected number of typical sections along the panel. Therefore, an entire panel can be analyzed with few sections. The state of plane strain can be easily induced, during simulation through symmetry and applied boundary conditions that simplify the modeling process. To study the reliability and effectiveness of the developed simulation process, the analytical results are compared with measured results of production automotive body side panels. The comparison demonstrates that the developed simulation process is reliable and can be effective for analyzing sheet metal formability, in early vehicle development phases.