• Title/Summary/Keyword: Effect of foundation stiffness

Search Result 119, Processing Time 0.057 seconds

지반-구조물 상호작용 원심모형시험에 대한 수치해석 (Numerical Simulation of Soil-Structure Interaction in Centrifuge Shaking Table System)

  • 김동관;박홍근;김동수;이세현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.201-204
    • /
    • 2010
  • Earthquake load to design a structure has been calculated from a fixed base SDOF model using amplified surface accelerations along soft soil layers. But the method dose not consider a soil-structure interaction. Centrifugal experiments that were consisted of soil, a shallow foundation and a structure were performed to find the effects of soil-structure interaction. The experiments showed that mass and stiffness of the foundation affected a response of the structure and nonlinear behavior of soil near the foundation. And a rocking displacement caused by overturning moment affected the response and increases a damping effect. In this study, the centrifugal experiment was simulated as a two dimensional finite element model. The finite element model was used for nonlinear time domain analysis of the OpenSees program. The numerical model accurately evaluated the behaviors of soil and the foundation, but the rocking effect and the behavior of structure were not described.

  • PDF

지오그리드 매트리스기호의 전파듣력에 관한 연구 (Dispersing Stress under Geogrid-Mattress Foundation)

  • 주재우;장용채;박종범
    • 한국지반공학회지:지반
    • /
    • 제14권4호
    • /
    • pp.117-128
    • /
    • 1998
  • 지오그리드를 이용한 입체적인 매트리스기초는 연약지반의 지지력을 증가시키기 위해서 증증 사용되며 그 효과를 인정받고 있다. 지오그리드-매트리스 시스템이란 그 자체의 강성에 의해 하중을 보다 더 넓게 기초지반에 분산시킴으로서 지지력의 증대효과 및 침하억제효과를 가져오는 공법이다. 그러나, 이에 대한 메카니즘은 아직 명확하게 규명되어 있지 않다. 본 연구에서는 지오그리드 매트리스기초 아래 전파응력분포 특성을 파악하기 위해 모형실험을 실시하였고, 실험에서는 지오그리드 매트리스기초와 두께 및 지지하는 기초의 강성 등을 영향인자로서 고려하였다. 실험결과로부터 매트리스기초하의 전파응력분포 특성을 파악하였고, 지오그리드 매트리스기초 설계시 지지력을 구할 수 있는 방법을 제안하였다.

  • PDF

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Shear buckling analysis of laminated plates on tensionless elastic foundations

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.697-709
    • /
    • 2017
  • The current study addresses the local buckling analysis of an infinite thin rectangular symmetrically laminated composite plate restrained by a tensionless Winkler foundation and subjected to uniform in-plane shear loading. An analytic method (i.e., one-dimensional mathematical method) is used to achieve the analytical solution estimate of the contact buckling coefficient. In addition, to study the effect of ply angle and foundation stiffness on the critical buckling coefficients for the laminated composite plates, the parametric studies are implemented. Moreover, the convergence for finite element (FE) mesh is analysed, and then the examples in the parametric study are validated by the FE analysis. The results show that the FE analysis has a good agreement with the analytical solutions. Finally, an example with the analytical solution and FE analysis is presented to demonstrate the availability and feasibility of the presented analytical method.

Analysis of circular plates on two - parameter elastic foundation

  • Saygun, Ahmet;Celik, Mecit
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.249-267
    • /
    • 2003
  • In this study, circular plates subjected to general type of loads and supported on a two-parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the deflection of the soil surface outside the domain of the plate in order to establish the interaction between the plate and the soil. According to Vallabhan and Das (1991) the elastic bedding (C) and shear parameters ($C_T$) of the foundation are expressed depending on the elastic constants ($E_s$, $V_s$) and the thickness of compressible soil layer ($H_s$) and they are calculated with a suitable iterative procedure. Using ring sector elements presented in this paper, permits the generalization of the loading and the boundary conditions of the soil outside the plate.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

계단식 지오그리드 보강토 옹벽의 계측 (Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall)

  • 유충식;정혁상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF

전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링 (Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load)

  • 김준수;김성종;이혁;하성규;이영현
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1547-1557
    • /
    • 2013
  • 시간변화 이동자기력이 작용하는 레일의 변형을 티모센코 보 이론(Timoshenko beam theory)로 가정하였으며, 보의 진동특성에 영향을 미치는 탄성체기초의 감쇠효과 및 강성을 고려하였다. 푸리에 급수와 수치해석을 이용해 강제진동모델의 동적응답과 임계속도를 구하였다. 레일의 진동모델을 유한요소 해석 및 오일러 보 이론(Euler beam theory)과 비교 검증하였다. 강제진동모델을 이용하여 레일의 영구변형을 예측하였으며, 실험결과 레일표면의 영구변형 및 마모를 확인하였다. 보의 설계변수인 레일의 형상, 재료, 탄성체 기초의 감쇠효과 및 강성이 레일의 임계속도 및 레일의 처짐, 축 방향 응력, 전단 응력에 미치는 영향에 대한 매개변수적 연구를 진행하였으며, 보의 설계방향을 얻을 수 있었다.

Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tahar, Benabdallah
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.447-462
    • /
    • 2019
  • This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.

수치해석을 이용한 송전철탑 연결형 기초의 연결보 강성에 따른 거동 특성 (Finite Element Analysis for Transmission Tower Behavior Characteristic by Connection Beam Stiffness)

  • 최영호;경두현;이준환
    • 대한토목학회논문집
    • /
    • 제33권1호
    • /
    • pp.219-227
    • /
    • 2013
  • 본 연구에서는 연약점토지반에 근입된 송전철탑 기초를 대상으로, 기초부보강공법의 하나인 연결형 기초 형식의 거동과 연결보 특성에 따른 성능발휘 효과를 분석하였다. 이를 위해 유한요소 해석 모델을 구축하였으며, 송전철탑 기초에 연결보의 매트와 닿는 면적비율변화에 의한 거동 및 저항력 특성을 분석하였고, 송전철탑 연결형 기초 모형실험 결과를 이용하여 구축된 유한요소 해석 모델의 타당성의 검증을 실시하여 다양한 매개변수 해석을 통해 연결보의 강성 증가에 따른 효과를 분석하여 송전철탑 연결형 기초의 거동에 효과적인 연결보의 강성을 선정 하였다. 또한, 연결보 자체 휨 모멘트 분포를 확인하여 취약부 분석을 실시하였다.