• Title/Summary/Keyword: Edwardsiella species

Search Result 32, Processing Time 0.025 seconds

Interaction of Apidaecin Ib with Phospholipid Bilayers and its Edwardsiella Species-specific Antimicrobial Activity

  • Seo, Jung-Kil;Go, Hye-Jin;Moon, Ho-Sung;Lee, Min-Jeong;Hong, Yong-Ki;Jeong, Hyun-Do;Nam, Bo-Hye;Park, Tae-Hyun;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.115-122
    • /
    • 2012
  • Apidaecin Ib had strong antimicrobial activity against several tested Gram-negative bacteria including Escherichia coli, Enterobacter cloacae, and Shigella flexneri (MECs; $0.3-1.5{\mu}g/mL$), but showed no activity against all the tested Gram-positive bacteria including Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and one yeast, Candida albicans (MECs; > $125{\mu}g/mL$). Interestingly, this peptide showed potent antibacterial activity only against Edwardsiella species (MECs; $0.6-3.6{\mu}g/mL$) among the tested fish pathogenic bacteria through a bacteriostatic process and showed no significant hemolytic activity. Apidaecin Ib took an unordered structure in all environments and also had very weak membrane perturbation activity even at $25{\mu}M$. Anti-Edwardsiella activity of apidaecin Ib is stronger than those of other antimicrobial polypeptides or antibiotics, but its activity is salt-sensitive. These results suggest that apidaecin Ib has Edwardsiella speciesspecific antibacterial activity and could be applied as new preventive or control additives for Edwardsiella species infection in freshwater fish aquaculture.

Genetic Identification and Biochemical Characteristics of Edwardsiella Strains Isolated from Freshwater Fishes Cultured in Korea (내수면 양식 어류에서 분리된 Edwardsiella 속 균주들의 유전학적 동정 및 생화학적 특성)

  • Jang, Mun Hee;Kim, Keun-Yong;Lee, Yu Hee;Oh, Yun Kyung;Lee, Jeong-Ho;Song, Jun-Young
    • Journal of fish pathology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The genus Edwardsiella belonging to the family Enterobacteriaceae is a member of Gram-negative rod-shaped bacteria that cause disease in diverse aquatic organisms such as fish, amphibians and reptiles as well as avians and mammals including human throughout the world. This genus had been composed of three species, E. hoshinae, E. ictaluri and E. tarda, but recent researches erected two novel species, E. anguillarum and E. piscicida that were conventionally identified as E. tarda. In this study, we isolated seven strains belonging to the genus Edwardsiella from freshwater fishes that had been reared at inland fish farms in South Korea and investigated their biochemical characteristics and molecular phylogenetic relationships. The seven strains showed typical characteristics of four Edwardsiella species, E. anguillarum, E. ictaluri, E. piscicida and E. tarda, by biochemical analyses of Gram staining, indole and hydrogen sulfide (H2S) production, and API (Analytic Profile Index) 20E test. Molecular phylogenetic analyses inferred from DNA sequence data of both 16S ribosomal RNA (rRNA) and DNA gyrase subunit B (gyrB) genes were congruent with the biochemical characteristics. As a result, both biochemical and molecular phylogenetic analyses identified four strains isolated from three Anguilla species as E. anguillarum, E. piscicida and E. tarda, two strains from Pelteobagrus fulvidraco and Silurus asotus as E. ictaluri, and one strain from Moroco oxycephalus as E. piscicida. In this study, we isolated and successfully identified recently newly erected species, E. anguillarum and E. piscicida in addition to historically notorious pathogenic species, E. ictaluri and E. tarda. In the future study, systematic and comprehensive monitoring of the four Edwardsiella species are required for studying differences in pathogenicity among freshwater fishes.

Present Situation of Diseases Occurred with Cultured Marine Fishes in Kamak Bay (가막만 가두리 양식자의 어류질병에 관한 연구)

  • 최상덕
    • Journal of Aquaculture
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 1997
  • The pathogenic organisms occurred in cultured marine fishes in Kamak Bay were investigated from March to November in 1993. The samples were collected at 7 sampling stations once a month. Nine species of pathogenic organisms (Vibrio sp., Edwardsiella sp., Flexibacter sp., Streptococcus sp., Micrococcus sp., Caligus sp., Trichodina sp., Lymphocystis and Staphylococcus sp.) were identified as pathogenic organisms from four different species of fish (Sebastes schlegeli, Paralichthys olivaceus, lateolabrax japonicus and Pagrus major) collected in the study areas. Most of pathogenic organisms were found at over 20^{\circ}C$ of sea water temperature from June to October in 1993. On the test of drug sensitivity, Vibrio sp. (KS-9303) was sensitive to oxytetracycline and chloramphenicol ; Edwardsiella sp. (KP-9315) to oxytetracycline ; Flexibacter sp. (KP-9318) to oxytetracycline, chloramphenicol and oxolinic acid ; Streptococcus sp. (KP-9319) to erythromycin, chlorampheicol and oxytetracycline. However, all these 4 isolated bacteria were resistant to ampicilin, steptomycin, sulfamethoxazole and nitrofurazone.

  • PDF

Species-Specific Duplex PCR for Detecting the Important Fish Pathogens Vibrio anguillarum and Edwardsiella tarda

  • Jo, Geon-A;Kwon, Sae-Bom;Kim, Na-Kyeong;Hossain, Muhammad Tofazzal;Kim, Yu-Ri;Kim, Eun-Young;Kong, In-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.273-277
    • /
    • 2013
  • Vibriosis caused by Vibrio anguillarum and edwardsiellosis caused by Edwardsiella tarda are septicemic diseases of many commercially important freshwater and marine fishes, and threaten the aquaculture industry in Korea. Early diagnosis and accurate identification of these two bacterial species could help to prevent these diseases and minimize the damage to cultured marine species. This study designed a duplex polymerase chain reaction (PCR) method for the simultaneous detection of two major fish pathogens: V. anguillarum and E. tarda. Each pair of oligonucleotide primers exclusively amplified the target groEL gene of the specific microorganism. Twenty-two Vibrio and ten non-Vibrio enteric species were used to check the specificity of the primers, which were found to be highly specific for the target species, even among closely related species. The detection limit was 400 pg for V. anguillarum and 4 ng for E. tarda when mixed purified DNA was used as the template. This assay showed high specificity and sensitivity in the simultaneous detection of V. anguillarum and E. tarda from artificially inoculated seawater and fish.

Microbial Flora in Ascitic Cultivated Olive Flounder (Paralichthys olivaceus) in Koe-je Island in Korea During 2002-2003. (2002-2003년도 복수증 양식산 넙치로부터 동정된 미생물상)

  • 이훈구;손병화;오명주
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.133-138
    • /
    • 2004
  • A lot of cultured flounders died by ascitic disease blooming during the summer season in 2002, southern parts of Korea. This study was conducted to investigate the microbial flora for the ascitic cultivated olive flounder (Paralichthys olivaceus) which were collected in the Koe-je island in the southern of Korea from July 2002 to October 2003. Three Genera (Vibrio, Photobacterium and Edwardsiella), seven species of bacteria (V. harveyi, V. alginolyticus, V. parahaemolyticus, V. carcariae, V. metschenikovii, P. damsela and E. tarda) and a fish pathogenic birnavirus (marine birnavirus, MABV) were isolated from the liver, dropsy, spleen and identified by biochemical and molecular biological characterization.

The antimicrobial compound of Rhus verniciflua barks against fish pathogenic gram-negative bacteria, Edwardsiella tarda and Vibrio anguillarum (어류병원성 그람음성세균 Edwardsiella tarda와 Vibrio anguillarum에 대한 칠피의 항균활성물질)

  • Kang, So-Young
    • Journal of fish pathology
    • /
    • v.18 no.3
    • /
    • pp.227-237
    • /
    • 2005
  • To obtain antimicrobial compounds against fish pathogenic bacteria from natural products, 80% methanolic extracts from 14 species of medicinal plant were screened for antimicrobial activity against fish pathogenic bacteria, Edwardsiella tarda and Vibrio anguillarum. Among them, Glycyrrhiza glabra, Rhus vemiciflua and Sanguisorba officinalis were effective for growth inhibition of Gram-negative bacteria, both E. tarda YSF and V. anguillarum YSR. Through the activity-guided isolation for R. verniciflua extract that exhibited the highest antimicrobial activity among three extracts, one antimicrobial compound (1) was isolated and identified as methyl-3,4,5-trihydroxybenzoate, or methyl gallate. This compound significantly inhibited the growth of tested strains of both E. tarda and V. anguillarum exhibiting MIC of 1 mg/ml for each strain.

Chitosan Silver Nano Composites (CAgNCs) as Antibacterial Agent Against Fish Pathogenic Edwardsiella tarda (어류 병원성 균주 Edwardsiella tarda에 대한 키토산-실버 나노입자의 항박테리아 효과)

  • Dananjaya, S.H.S.;Godahewa, G.I.;Lee, Youngdeuk;Cho, Jongki;Lee, Jehee;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.502-506
    • /
    • 2014
  • Recently nano particles have proven for wide array of bioactive properties. In the present study, antibacterial properties of chitosan silver nano composites (CAgNCs) were investigated against fish pathogenic Edwardsiella tarda. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs against E. tarda were $25{\mu}g/mL$ and $125{\mu}g/mL$, respectively. The field emission scanning electron microscope (FE-SEM) image of CAgNCs treated E. tarda showed the strongly damaged bacteria cells than non-treated bacteria. Furthermore, treatment of CAgNCs induced the level of intracellular reactive oxygen species (ROS) in E. tarda cells in concentration and time dependent manner suggesting that it may generate oxidative stress leading to bacterial cell death. In addition, MTT assay results showed that the lowest cell viability at $100{\mu}g/mL$ of CAgNCs treated E. tarda. Overall results of this study suggest that CAgNCs is a potential antibacterial agent to control pathogenic bacteria.

Resistance Patterns of Frequently Applied Antimicrobials and Occurrence of Antibiotic Resistance Genes in Edwardsiella tarda Detected in Edwardsiellosis-Infected Tilapia Species of Fish Farms of Punjab in Pakistan

  • Kashif Manzoor;Fayyaz Rasool;Noor Khan;Khalid Mahmood Anjum;Shakeela Parveen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.668-679
    • /
    • 2023
  • Edwardsiella tarda is one of the most significant fish pathogens, causes edwardsiellosis in a variety of freshwater fish species, and its antibiotic resistance against multiple drugs has made it a health risk worldwide. In this study, we aimed to investigate the antibiotic resistance (ABR) genes of E. tarda and establish its antibiotic susceptibility. Thus, 540 fish (299 Oreochromis niloticus, 138 O. mossambicus, and 103 O. aureus) were collected randomly from twelve fish farms in three districts of Punjab in Pakistan. E. tarda was recovered from 147 fish showing symptoms of exophthalmia, hemorrhages, skin depigmentation, ascites, and bacteria-filled nodules in enlarged liver and kidney. Antimicrobial susceptibility testing proved chloramphenicol, ciprofloxacin, and streptomycin effective, but amoxicillin, erythromycin, and flumequine ineffective in controlling edwardsiellosis. Maximum occurrence of qnrA, blaTEM, and sul3 genes of E. tarda was detected in 45% in the liver, 58%, and 42% respectively in the intestine; 46.5%, 67.2%, and 55.9% respectively in O. niloticus; 24%, 36%, and 23% respectively in summer with respect to fish organs, species, and season, respectively. Motility, H2S, indole, methyl red, and glucose tests gave positive results. Overall, E. tarda infected 27.2% of fish, which ultimately caused 7.69% mortality. The Chi-squared test of independence showed a significant difference in the occurrence of ABR genes of E. tarda with respect to sampling sites. In conclusion, the misuse of antibacterial agents has led to the emergence of ABR genes in E. tarda, which in association with high temperatures cause multiple abnormalities in infected fish and ultimately resulting in massive mortality.

Comparison of antigenicity of Edwardsiella tarda isolates in loach(Misgurnus mizloepis) (미꾸라지에서의 Edwardsiella tarda isolates의 항원성 비교)

  • Lee, Young;Jun, Lyu-Jin;Kim, Myoung-Suk;Park, Kyung-Hyun;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2008
  • We compared the pathogenicity and antigenicity of two different Edwardsiella tarda (E. tarda) strains KFE and Edk-2 isolated in Korea and Japan respectively. In the pathogenicity analysis with challenge test against loach, E. tarda KFE isolate showed stronger pathogenicity compared to that of E. tarda Edk-2 isolate. The differences were also confirmed by the comparison of OMP (outer membrane protein) in SDSPAGE which showed three major bands, 41kDa, 37kDa and 30kDa, for E. tarda KFE isolates and two major bands, 41kDa and 30kDa, for E. tarda Edk-2 isolates. On the base of these results, we tried to determine the differences of antigenicities of these two isolates in loach which is one of the important species in freshwater aquaculture in Korea. Numbers of specific antibody secreting cells (SASC), appeared to be higher in loach immunized with FKC of E. tarda Edk-2 than loach immunized with FKC of E. tarda KFE. ELISPOT-assay for the comparison of antigenicity showed relatively high percentage of cross-reaction and implied the presence of some common epitopes in the antigens of these two E. tarda isolates.

In vitro antimicrobial activity of Korean propolis against fish pathogenic bacteria (Propolis의 어류 병원성 세균에 대한 in vitro 항균 효과)

  • Heo, Gang-Joon;Won, Tae-Gyeong;Shin, Gee-Wook
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.2
    • /
    • pp.65-70
    • /
    • 2015
  • The present study was to investigate in vitro antimicrobial effects of propolis against six different fish bacterial pathogens, Aeromonas hydrophila, Edwardsiella tarda, Vibrio vulnificus, V. parahaemolyticus, A. salmonicida subsp. masoucida, A. salmonicida subsp. salmonicida) using minimum inhibitory concentration (MIC) and minimum bacteriocidal concentration (MBC) tests. In the results, propolis exhibited antimicrobial activity against all bacteria used in the present study, but there was no marked difference in bacterial species except Vibrio species. Collectively, propolis was thought to be an usefulness antimicrobial substance for controlling bacterial diseases in the fish industry.