KSII Transactions on Internet and Information Systems (TIIS)
/
제9권10호
/
pp.4092-4107
/
2015
We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.
본 논문에서는 선행 연구한 $\Delta$-형 필터를 토대로 하여 이의 특성을 종합적으로 비교 분석하였다. 먼저 화면 확장을 위한 $\Delta$-형 필터의 알고리즘에 대해서 논하였고, 이의 특성, 즉 $\Delta$-형 필터의 에지보존특성과 알고리즘에 근거하여 기존 방식들과의 연산량을 비교하였다. 그리고 제안한 방식과 기존의 알고리즘을 PSNR을 도입하여 정량적으로 비교하였으며, Synopsys VHDL에 의한 구현을 통하여 하드웨어의 복잡성을 비교하였다. 마지막으로 $\Delta$-형 필터의 특징과 trade off에 대해서 논하였다.
Total ankle arthroplasty has become a viable motion-preserving alternative to ankle arthrodesis, especially in the last two decades. Recent improvements have been achieved in the strength of implant design and surgical technique. Nevertheless, addressing preoperative deformities is essential for successful outcomes of total ankle arthroplasty. Residual malalignment can produce instability and edge loading, causing acceleration of polyethylene wear, followed by osteolysis and an increased risk of revision surgery. Therefore, the accompanying deformities and their correction techniques need to be comprehensively elucidated and understood. In this article, we provide a review of the application of total ankle arthroplasty in arthritis with coronal plane varus and valgus deformities.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권4호
/
pp.1234-1257
/
2023
In this paper, we propose a framework for multi-focus image fusion called PATN. In our approach, by aggregating deep features extracted based on the U-type Transformer mechanism and shallow features extracted using the PSA module, we make PATN feed both long-range image texture information and focus on local detail information of the image. Meanwhile, the edge-preserving information value of the fused image is enhanced using a dense residual block containing the Sobel gradient operator, and three loss functions are introduced to retain more source image texture information. PATN is compared with 17 more advanced MFIF methods on three datasets to verify the effectiveness and robustness of PATN.
This work aims to present an analysis of the structural reliability of reinforced concrete (RC) columns designed according to the general method outlined in Eurocode 2 (EN 1992-1-1 2004). Probabilistic analyses are conducted by integrating the Monte Carlo method with metamodels (or surrogate models) generated using Kriging and some machine learning techniques. The study was developed based on an algorithm that verifies the columns subject to biaxial bending, considering the physical and geometric nonlinearities. Columns were analyzed assuming sign inversion of end bending moments (with reverse curvature), which portray the typical situations in conventional structures of RC buildings. The probabilistic results reveal that the typical RC columns in buildings designed according to the design procedures of the studied standard, whether they are located at the center, corner, or edge, exhibit reliability levels surpassing those deemed acceptable within the technical community. Furthermore, the integration of surrogate models proves beneficial by alleviating the computational burden associated with evaluations while preserving accuracy.
본 논문에서는 2차원 영상에서 3차원 깊이정보를 추출하기 위해서 진화연산 알고리즘을 적용한 고속 3차원 모델 추출 기법을 제안한다. 진화연산 알고리즘은 자연 선택과 개체군 유전학에 기반 한 생물학적 진화 과정을 통해 최적의 해를 찾는 효율적인 탐색 기법이다. 기존의 스테레오 정합 방법에서 생성되어진 2차원 깊이 정보인 변이 맵은 경계 부근에서 애매한 결과를 도출함으로써 변이의 세밀하고 정확한 정보를 잃어 실 영상과는 다소 차이를 갖는다. 본 논문에서는 소형 유전자 알고리즘을 스테레오 정합환경에 맞게 변형시키고, 생성된 변이 맵의 모호성을 해결하기 위해 이전 세대의 변이 맵으로부터 경계를 검출한 변이 경계정보에서 이웃한 화소의 변이 복잡도를 측정하여 복잡도에 따라 적응적 윈도우를 결정하여 정합에 사용하였다. 실험을 통해 제안한 방식이 이완 처리를 포함한 기존의 정합 방식보다 변이 맵 생성에 있어 보다 상세하고 매끄러운 변이 결과를 얻을 수 있었다.
양방향 필터(bilateral filter)는 필터링 시 주변 화소의 평균을 계산하여 경계 보존과 잡음제거에 장점을 가진다. 본 논문에서는 윈도우 분할 기반 양방향 필터에 대하여 실시간 처리가 가능한 시스템을 설계하였다. 윈도우 내부의 주변 화소를 5분할하고 연속된 중심화소와 공유하는 주변 화소를 동시에 연산하는 파이프라인 스케줄링을 적용한 병렬 처리 기법으로 성능을 개선하였다. 비트 폭에 따른 필터 성능과 하드웨어 자원 소모에 대한 상충관계(tradeoff)를 고려하였으며, 필터링 결과 영상의 PSNR 분석을 통하여 비트를 할당하였고 사용된 지수함수는 16단계의 계단함수 LUT를 적용하였다. 설계한 시스템은 verilogHDL로 설계되었으며, 동부하이텍 110nm 라이브러리를 사용하여 Synopsys를 통해 합성하였고 416MHz의 최대 동작주파수에서 416Mpixels/s(397fps)의 처리량(throughput)과 132K 게이트의 하드웨어 자원을 사용한다.
초해상화 기법은 저해상도 영상을 고해상도 영상으로 변환하는 기법이다. 최근에는 딥러닝 기술을 활용한 초해상화 방법이 주류를 이루고 있으며, 원격 탐사 분야에서도 이를 응용한 연구가 증가하고 있다. 본 연구에서는 위성 영상의 4배 해상도 향상을 위하여 deep back-projection network (DBPN) 네트워크에 기반한 초해상화 기법을 제안하였다. 또한, 복원된 영상의 디테일 및 윤곽선 부분에서의 고품질 영상 획득을 위해 윤곽선 손실 함수를 제안하고, 효과적이고 안정적인 학습을 위하여 Wasserstein distance 손실 함수를 사용한 GAN 기법을 적용하였다. 또한, 자연스러운 저해상도 훈련 영상을 획득하기 위한 detail preserving image downscaling (DPID) 기법을 적용하였다. 마지막으로 전정 영상의 특징을 추출하여 훈련의 마지막 단계에 적용 시킴으로써 출력 영상의 세부적인 특징을 효과적으로 생성하였다. 그 결과 실험에 사용된 WorldView-3 영상 및 KOMPSAT-2 영상에서 해상도 향상 효과를 확인하였고, 다른 초해상화 모델에 대비하여 윤곽선 보존력이나 영상의 선명도가 향상 되었음을 확인하였다
수치표고모델(DEM, Digital Elevation Model)을 컴퓨터를 이용하여 자동으로 생성할 때 입체영상매칭(stereo matching) 연산은 많은 수행시간이 소요된다. 매칭연산은 일반적으로 상관계수(correlation)에 의한 방법이 사용되고 있으며, 매칭점 분포가 균등한 지역기반방식(area-based method)이 주로 이용되고 있다. 본 논문에서는 지형을 식별하여 매칭연산에서 검색영역(search area)과 기준윈도우(mask window)의 크기를 조정하여 효율적인 매칭을 수행하는 방안을 제시하였다. 영상을 분할하기 위하여 경계보호평활화 필터(edge-preserving smoothing filter)를 사용하여 전처리를 수행하였으며, 필터를 거친 영상에 대해서 영역성장 알고리듬을 적용하였다. 분할된 영역은 MRF(Markov Random Field) 모델에 의한 식별과정을 통하여 산악, 평야, 수계지역으로 식별된다. 영상매칭은 예비시차(predicted parallex) 계산과 상세매칭(fine matching)의 두 단계를 거치며, 예비시차를 이용하여 상세매칭단계에서 검색영역의 위치를 결정한다. 검색영역과 기준윈도우의 크기는 화소에 대한 지형식별정보에 의해 결정된다. 주변화소와 시차가 유사한 평야지역과 수계지역의 검색영역을 축소함으로서 매칭연산시간을 단축시켰다. 대전-금산지역의 $10km{\times}10km(1024{\times}1024)$ 영상을 4개 사용하여 실험한 결과 지형식별정보를 이용하지 않았을 경우보다 영상매칭 수행시간이 $25%{\times}35%$정도 단축시킬 수 있음을 보였다.
본 논문에서는 선명도가 향상된 영상의 오버슈트와 계단현상을 줄이기 위해 에지 보존 스무딩 필터인 bilateral filter를 이용한 적응적 언샤프 마스킹 기법을 제안한다. Unsharp masking(UM)을 포함한 기존의 선명도 개선 기법들은 영상의 고주파정보를 강하게 강조하지만, 종종 오버슈트, 잡음증폭, 계단현상 등 여러 문제점들을 야기한다. 제안한 선명도 개선 방법은 bilateral filter를 활용하여 에지를 잘 보존하고, 에지의 방향성에 따라 가중치를 더 세밀하게 조절한다. 따라서 선명도는 향상시키고 오버슈트, 계단현상 문제를 효과적으로 줄일 수 있었다. 기존의 적응적 언샤프 마스킹 기법과 제안하는 방법의 결과영상을 비교하여 실험을 수행한 결과, 제안하는 알고리즘이 적절하게 선명도를 개선함을 보여주었고 오버슈트와 계단현상도 많이 감소시킴을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.