• Title/Summary/Keyword: Eddy Covariance

Search Result 105, Processing Time 0.029 seconds

Comparison of Soil Evaporation Using Equilibrium Evaporation, Eddy-Covariance and Surface Soil Moisture on the Forest Hillslope (산림 사면에서 토양수분 실측 자료, 평형증발 및 에디-공분산방법을 이용한 토양증발비교)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Kim, Su-Jin
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.119-129
    • /
    • 2013
  • We compared equilibrium evaporation($E_{equili}$) eddy-covariance($E_{eddy}$) with soil moisture data($E_{SMseries}$) which were measured with a 2 hours sampling interval at three points for a humid forest hillslope from May 5th to May 31th in 2009. Accumulations of $E_{eddy}$, $E_{equili}$ for the study period were estimated as 2.52, 3.28 mm and those of $E_{SMseries}$ were ranged from 1.91 to 2.88 mm. It suggested that the eddy-covariance method considering the spatial heterogeneity of soil evaporation is useful to evaluate the soil evaporation. Method A, B and C were proposed using mean meterological data and daily moisture variation and the computations were compared to eddy-covariance method and equilibrium evaporation. The methods using soil moisture data can describe the variations of soil evaporation from eddy-covariance through simple moving average analysis. Method B showed a good matched with eddy-covariance method. This indicated that Dry Surface Layer (DSL) at 14:00 which was used for method B is important variable for the evaluation of soil evaporation. The total equilibrium evaporation was not significantly different to those of the others. However, equilibrium evaporation showed a problem in estimating soil evaporation because the temporal tendency of $E_{equili}$ was not related with the those of the other methods. The improved understanding of the soil evaporation presented in this study will contribute to the understandings of water cycles in a forest hillslope.

On Using the Eddy Covariance Method to Study the Interaction between Agro-Forest Ecosystems and the Atmosphere (농림생태계와 대기간의 상호 작용 연구를 위한 에디 공분산 방법의 사용에 관하여)

  • Choi Taejin;Kim Joon;Yun Jin-il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.60-71
    • /
    • 1999
  • The micrometeorological tower flux network is the cornerstone of the global terrestrial vegetation monitoring. The eddy covariance technique used for tower fluxes is derived from the conservation of mass and is most applicable for steady-state conditions over flat, extended, and uniform vegetation. This technique allows us to obtain surface fluxes of energy budget components, greenhouse and trace gases, and other pollutants. The quality-controlled flux data are invaluable to validate various models with temporal scales ranging from minutes to years and spatial scales ranging from a few meters to hundreds of kilometers. In this paper, we review the theoretical background of this important eddy covariance technique, examine the measurement criteria and corrections, and finally suggest some measurement strategies that may facilitate coordinated flux measurements among different disciplines and provide a strong infrastructure for the global flux network.

  • PDF

Surface Flux Measurements at King Sejong Station in West Antarctica: I. Turbulent Characteristics and Sensible Beat Flux (남극 세종기지에서의 지표 플럭스 관측: I. 난류 특성과 현열 플럭스)

  • Choi, Tae-Jin;Lee, Bang-Yong;Lee, Hee-Choon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.453-463
    • /
    • 2004
  • The Antarctic Peninsula is important in terms of global warming research due to pronounced increase of air temperature over the last century. The first eddy covariance system was established at King Sejong Station located in the northern region of the Antarctic Peninsula in December of 2002 and has been operated over one year. Here, we analyze turbulent characteristics to determine quality control criteria for turbulent sensible heat flux data as well as to diagnose the possibility of long term eddy covariance measurement under extreme weather conditions of the Antarctic Peninsula. We also report the preliminary result on sensible heat flux. Based on the analyses on turbulent characteristics such as integral turbulence characteristics of vertical velocity (w) and heat (T), stationarity test and investigation of correlation coefficient, they fallow the Monin-Obukhov similarity and eddy covariance flux data were reliable. ${\sim}47%$ of total retrieved sensible heat flux data could be used for further analysis. Daytime averaged sensible heat flux showed a pronounced seasonal variation, with a maximum of up to $300Wm^{-2}$ in summer. In conclusion, continuous and long-term eddy covariance measurement may be possible at the study site and the land surface may influence the atmosphere significantly through heat transport in summer.

Can $CO_2$ concentration at one level of eddy covariance measurement be used to estimate storage term over forest\ulcorner

  • Choi, Tae-Jin;Chae, Nam-Yi;Kim, Joon;Lim, Jong-Hwan
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.47-50
    • /
    • 2003
  • $CO_2$ concentration profile was measured to investigate whether $CO_2$ concentration at one level (i.e., eddy covariance measurement level) can be used to estimate storage term without significant uncertainty at broadleaf deciduous forest at Kwangneung experiment forest in Korea. Based on t-test with significance level of 5%, there was no statistical difference between storage term from one-level $CO_2$ concentration and one from $CO_2$ profile measurement. Storage term constitutes on average 5% of half hourly net ecosystem exchange (NEE) even at unstable stability (i.e., well mixed condition), indicating that storage term should be considered even at daytime, which is sometimes neglected.

  • PDF

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method (인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증)

  • Sur, Chan-Yang;Han, Seung-Jae;Lee, Jung-Hoon;Choi, Min-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.435-448
    • /
    • 2012
  • Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.

Errors in Net Ecosystem Exchanges of CO2, Water Vapor, and Heat Caused by Storage Fluxes Calculated by Single-level Scalar Measurements Over a Rice Paddy (단일 높이에서 관측된 저장 플럭스를 사용할 때 발생하는 논의 이산화탄소, 수증기, 현열의 순생태계교환량 오차)

  • Moon, Minkyu;Kang, Minseok;Thakuri, Bindu Malla;Lee, Jung-Hoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.227-235
    • /
    • 2015
  • Using eddy covariance method, net ecosystem exchange (NEE) of $CO_2$ ($F_{CO_2}$), $H_2O$ (LE), and sensible heat (H) can be approximated as the sum of eddy flux ($F_c$) and storage flux term ($F_s$). Depending on strength and distribution of sink/source of scalars and magnitude of vertical turbulence mixing, the rates of changes in scalars are different with height. In order to calculate $F_s$ accurately, the differences should be considered using scalar profile measurement. However, most of flux sites for agricultural lands in Asia do not operate profile system and estimate $F_s$ using single-level scalars from eddy covariance system under the assumption that the rates of changes in scalars are constant regardless of the height. In this study, we measured $F_c$ and $F_s$ of $CO_2$, $H_2O$, and air temperature ($T_a$) using eddy covariance and profile system (i.e., the multi-level measurement system in scalars from eddy covariance measurement height to the land surface) at the Chengmicheon farmland site in Korea (CFK) in order to quantify the differences between $F_s$ calculated by single-level measurements ($F_s_{-single}$ i.e., $F_s$ from scalars measured by profile system only at eddy covariance system measurement height) and $F_s$ calculated by profile measurements and verify the errors of NEE caused by $F_s_{-single}$. The rate of change in $CO_2$, $H_2O$, and Ta were varied with height depending on the magnitudes and distribution of sink and source and the stability in the atmospheric boundary layer. Thus, $F_s_{-single}$ underestimated or overestimated $F_s$ (especially 21% underestimation in $F_s$ of $CO_2$ around sunrise and sunset (0430-0800 h and 1630-2000 h)). For $F_{CO_2}$, the errors in $F_s_{-single}$ generated 3% and 2% underestimation of $F_{CO_2}$ during nighttime (2030-0400 h) and around sunrise and sunset, respectively. In the process of nighttime correction and partitioning of $F_{CO_2}$, these differences would cause an underestimation in carbon balance at the rice paddy. In contrast, there were little differences at the errors in LE and H caused by the error in $F_s_{-single}$, irrespective of time.

A Preliminary Flux Study for CO2 and Biogenic VOCs in a Forest (산림지역 이산화탄소 및 자연적휘발성유기화합물의 교환량 관측기법 기초연구)

  • Kim, So-Young;Kim, Su-Yeon;Choi, Soon-Ho;Kim, Sae-Wung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.485-494
    • /
    • 2012
  • The purpose of this study is to monitor the flux of $CO_2$ and BVOCs (biogenic volatile organic compounds) between the atmosphere and forest. The main research activities are conducted at Taehwa Research Forest (TRF), managed by the College of Agriculture and Life Sciences at Seoul National University. The TRF site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus Koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest and REA (Relaxed eddy accumulation) method applying eddy covariance was used for BVOCs flux. BVOCs flux that was measured in spring (from May 16 to 18) had distribution of 84 to $2917{\mu}g/m^2{\cdot}h$. Especially, it showed that d-limonene being strong reactivity composed the largest fraction of monoterpene. Ambient $CO_2$ concentration measured in Mt. Taehwa was 399 ppm and observed $CO_2$ fluxes between the atmosphere and forest suggested that during the day, $CO_2$ is absorbed by plants through photosynthesis and released during the night.

Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station (이어도해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측)

  • Lee, Hee-Choon;Lee, Bang-Yong;Kim, Joon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Surface energy and $CO_2$ fluxes have been measured over an ocean at Ieodo Ocean Research Station of KORDI since May 2003. Eddy covariance technique, which is a direct flux measurement, is used to quantitatively understand the interaction between the ocean surface and the atmospheric boundary layer. Although fluxes were continuously measured during the period from May 2003 to February 2004, the quality control of these data yielded <20% of data retrieval. The atmospheric stability did not show any distinct dirunal patterns and remained near-neutral to stable from May to June but mostly unstable during fall and winter in 2003. Sensible heat flux showed a good correlation with the difference between the sea water temperature and the air temperature. The maximum fluxes of sensible heat and latent heat were $120Wm^{-2}$ and $350Wm^{-2}$ respectively, with an averaged Bowen ratio of 0.2. The ocean around the tower absorbed $CO_2$ from the atmosphere and the uptake rates showed seasonal variations. Based our preliminary results, the daytime $CO_2$ flux was steady with an average of $-0.1 mgCO_2m^{-2}s^{-1}$ in summer and increased in winter. The nighttime $CO_2$ uptake was greater and fluctuating, reaching up to $-0.1 mgCO_2m^{-2}s^{-1}$ but these data require further examination due to weak turbulent mixing at nighttime. The magnitude of $CO_2$ flux was positively correlated with the half hourly changes in horizontal mean wind speed. Due to the paucity of quality data, further data collection is needed for more detailed analyses and interpretation.

Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact (비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향)

  • Lee, Doo-Il;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.

Estimation of the Random Error of Eddy Covariance Data from Two Towers during Daytime (주간에 두 타워로부터 관측된 에디 공분산 자료의 확률 오차의 추정)

  • Lim, Hee-Jeong;Lee, Young-Hee;Cho, Changbum;Kim, Kyu Rang;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.483-492
    • /
    • 2016
  • We have examined the random error of eddy covariance (EC) measurements on the basis of two-tower approach during daytime. Two EC towers were placed on the grassland with different vegetation density near Gumi-weir. We calculated the random error using three different methods. The first method (M1) is two-tower method suggested by Hollinger and Richardson (2005) where random error is based on differences between simultaneous flux measurements from two towers in very similar environmental conditions. The second one (M2) is suggested by Kessomkiat et al. (2013), which is extended procedure to estimate random error of EC data for two towers in more heterogeneous environmental conditions. They removed systematic flux difference due to the energy balance deficit and evaporative fraction difference between two sites before determining the random error of fluxes using M1 method. Here, we introduce the third method (M3) where we additionally removed systematic flux difference due to available energy difference between two sites. Compared to M1 and M2 methods, application of M3 method results in more symmetric random error distribution. The magnitude of estimated random error is smallest when using M3 method because application of M3 method results in the least systematic flux difference between two sites among three methods. An empirical formula of random error is developed as a function of flux magnitude, wind speed and measurement height for use in single tower sites near Nakdong River. This study suggests that correcting available energy difference between two sites is also required for calculating the random error of EC data from two towers at heterogeneous site where vegetation density is low.