DOI QR코드

DOI QR Code

A Preliminary Flux Study for CO2 and Biogenic VOCs in a Forest

산림지역 이산화탄소 및 자연적휘발성유기화합물의 교환량 관측기법 기초연구

  • Kim, So-Young (Department Air Quality Research Division, National Institute of Environmental Research) ;
  • Kim, Su-Yeon (Department Air Quality Research Division, National Institute of Environmental Research) ;
  • Choi, Soon-Ho (Department Air Quality Research Division, National Institute of Environmental Research) ;
  • Kim, Sae-Wung (Atmospheric Chemistry Division, National Center for Atmospheric Research)
  • 김소영 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 김수연 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 최순호 (국립환경과학원 기후대기연구부 대기환경연구과) ;
  • 김세웅 (미국 국립대기연구소 대기화학부)
  • Received : 2012.02.08
  • Accepted : 2012.09.12
  • Published : 2012.10.31

Abstract

The purpose of this study is to monitor the flux of $CO_2$ and BVOCs (biogenic volatile organic compounds) between the atmosphere and forest. The main research activities are conducted at Taehwa Research Forest (TRF), managed by the College of Agriculture and Life Sciences at Seoul National University. The TRF site is located 60 km north-east from the center of Seoul Metropolitan Area. The TRF flux tower is in the middle of a Korean Pine (Pinus Koraiensis) plantation ($400m{\times}400m$), surrounded by a mixed forest. Eddy covariance method was used for $CO_2$ flux above the forest and REA (Relaxed eddy accumulation) method applying eddy covariance was used for BVOCs flux. BVOCs flux that was measured in spring (from May 16 to 18) had distribution of 84 to $2917{\mu}g/m^2{\cdot}h$. Especially, it showed that d-limonene being strong reactivity composed the largest fraction of monoterpene. Ambient $CO_2$ concentration measured in Mt. Taehwa was 399 ppm and observed $CO_2$ fluxes between the atmosphere and forest suggested that during the day, $CO_2$ is absorbed by plants through photosynthesis and released during the night.

Keywords

References

  1. 김 준(2011) 복잡농림생태계의 온실기체 플럭스 관측, 한국대기환경학회 2011년 춘계학술대회 논문집, p. 419.
  2. 김현탁, 김연희, 엄향희 (2003) 에디공분산법을 이용한 해남 지표 플럭스 관측, 한국대기환경학회 2003 춘계학술대회 논문집, 415-416.
  3. 산림청(2003) 지역별산림기본통계(www.foa.go.kr).
  4. Andreae, M.O. and P.J. Crutzen (1997) Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052-1058. https://doi.org/10.1126/science.276.5315.1052
  5. Benkovitz, C.M., S.E. Schwartz, M.P. Jensen, M.A. Miller, R.C. Easter, and T.S. Bates (2004) Modeling atmospheric sulfur over the northern hemisphere during the Aerosol Characterization Experiment 2 experimental period, J. Geophys. Res., 109(34), D22207, doi: 10.1029/2004jd004939.
  6. Chameides, W.L., R.W. Lindsay, J. Richardson, and C.S. Kiang (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study, Science, 241, 1473-1475. https://doi.org/10.1126/science.3420404
  7. Ciais, P., P.P. Tans, M. Trolier, J.W.C. White, and R.J. Francey (1995) A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric $CO_{2}$, Science, 269 (5527), 1098-1102, DOI: 10.1126/science.269.5227.1098.
  8. Fuentes, J.D., M. Lerdau, R. Atkinson, D. Baldocchi, J.W. Bottenheim, P. Ciccioli, B. Lamb, C. Geron, L. Gu, A. Guenther, T.D. Sharkey, and W. Stockwell (2000) Biogenic hydrocarbons in the atmospheric boundary layer: A review, Bull. Amer. Meteorol. Soc., 81, 1537-575. https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
  9. Goodale, C.L., M.J. Apps, R.A. Birdsey, C.B. Field, L.S. Heath, R.A. Houghton, J.C. Jenkins, G.H. Kohlmaier, W. Kurz, S. Liu, G.-J. Nabuurs, S. Nilsson, and A.Z. Shvidenko (2002) Forest carbon sinks in the northern hemisphere, Ecological Applications, 12, 891-899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2
  10. Gouw, J. and C. Warneke (2007) Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, 26, 223-257. https://doi.org/10.1002/mas.20119
  11. Grabmer, M., M. Graus, C. Lindinger, A. Wisthaler, B. Rappengluck, R. Steinbrecher, and A. Hansel (2008) Disjunct eddy covariance measuremets of monoterpene fluxs from Norway spruce forest using PTRMS, International Journal of Mass Spectrometry, 239, 111-115.
  12. Graus, M., A. Hansel, A. Wisthaler, C. Lindinger, R. Forkel, K. Hauff, M. Klauer, A. Pfichner, and B. Rappengluck (2006) A relaxed-eddy-accumulation method for the measurement of isopreniod canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously, Atmospheric Environment, 40, S43-S54. https://doi.org/10.1016/j.atmosenv.2005.09.094
  13. Guenther, A., C.N. Hewitt, D.E. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, M. Mckay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P.R. Zimmerman (1995) A global-model of natural volatile organic-compound emissions, J. Geophys. Res.-Atmos., 100, 8873-8892. https://doi.org/10.1029/94JD02950
  14. IPCC (2007) Climate Change: the Physical Science Basis; Working Group I Contribution to the Fourth Assessment Report of the IPCC, Intergovernmental Panel on Climate Change. p. 135.
  15. Karl, T., C. Spirig, J. Rinne, C. Stroud, P. Prevost, J. Greeberg, R. Fall, and A. Guenther (2002) Virtual disjuct eddy covariance measurements of organic compound fluxes a subalpine forest using proton transfer reaction mass spectrometry, Atmopsheric Chemistry and Physics, 2, 279-291. https://doi.org/10.5194/acp-2-279-2002
  16. Kim, D.-S., Y.-K. Jang, and E.-C. Jeon (2000) Surface flux measurement of methane from landfills by closed chamber technique and its validation, J. of KOSAE, 16(5), 499-509. (in Korean with English abstract)
  17. Kim, S., T. Karl, A. Guenther, G. Tyndall, J. Orlando, P. Harley, R. Rasmussen, and E. Apel (2010) Emission and ambient distributions of Biogenic Volatile Organic Compounds (BVOC) in a Ponderosa pine ecosystem: interpretation of PTR-MS mass spectra, Atmopsheric Chemistry and Physics, 10, 1-14. https://doi.org/10.5194/acp-10-1-2010
  18. Kyaw, T.P.U. and T.P. Meyers (1989) Investigations with a higher-order canopy turbulence model into mean source-sink levels and bulk canopy resistances, Agricultural and Forest Meteorology, 47, 259-271. https://doi.org/10.1016/0168-1923(89)90099-3
  19. Lee, A., A.H. Goldstein, J.H. Kroll, N.L. Ng, V. Varutbangkul, R.C. Flagan, and J.H. Seinfeld (2006) Gasphase products and secondary aerosol yields from the photooxidation of 16 different terpenes, J. Geophys. Res., 111, D17305. https://doi.org/10.1029/2006JD007050
  20. Moncrieff, J.B., J.M. Massheder, H. de Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat, S. Scott, H. Soegaard, and A. Verhoef (1997). A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide, Journal of Hydrology, 188-189, 589-611. https://doi.org/10.1016/S0022-1694(96)03194-0
  21. White, M.L., R.S. Russo, Y. Zhou, J.L. Ambrose, K. Haase, E.K. Frinak, R.K. Varner, O.W. Wingenter, H. Mao, R. Talbot, and B.C. Sive (2009) Are biogenic emissions a significant 30 source of summertime atmospheric toluene in the rural Northeastern United States, Atmopsheric Chemistry and Physics, 9, 81-92. https://doi.org/10.5194/acp-9-81-2009
  22. Wiedinmyer, C., A. Guenther, P. Harley, N. Hewitt, C. Geron, P. Artaxo, R. Steinbrecher, and R. Rasmussen (2004) Global organic emissions from vegetation, in Emissions of Atmospheric Trace Compounds, Edited by C. Granier, P. Artaxo, and C. Reeves, Dordrecht, Boston, Kluwer Academic Publishers, 115-170.
  23. Wilson, K., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. IBrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma (2002) Energy balance closure at FLUXNET sites, Agricultural and Forest Meteorology, 113, 223-243. https://doi.org/10.1016/S0168-1923(02)00109-0

Cited by

  1. Measurements of Isoprene and Monoterpenes at Mt. Taehwa and Estimation of Their Emissions vol.17, pp.3, 2015, https://doi.org/10.5532/KJAFM.2015.17.3.217