DOI QR코드

DOI QR Code

Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method

인공위성 데이터 기반의 공간 증발산 산정 및 에디 공분산 기법에 의한 플럭스 타워 자료 검증

  • 서찬양 (한양대학교 건설환경공학과) ;
  • 한승재 (한양대학교 건설환경공학과) ;
  • 이정훈 (유량조사사업단) ;
  • 최민하 (한양대학교 건설환경공학과)
  • Received : 2012.07.20
  • Accepted : 2012.08.25
  • Published : 2012.08.31

Abstract

Evapotranspiration (ET) including evaporation from a land surface and transpiration from photosynthesis of vegetation is a sensitive hydrological factor with outer circumstances. Though both direct measurements with an evaporation pan and a lysimeter, and empirical methods using eddy covariance technique and the Bowen ratio have been widely used to observe ET accurately, they have a limitation that the observation can stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral sensor mounted on Terra satellite. We improved to evapotranspiration model based on remote sensing (Mu et al., 2007) and estimated Penman-Monteith evapotranspiration considering regional characteristics of Korea that was using only MODIS product. We validated evapotranspiration of Sulma (SMK)/Cheongmi (CFK) flux tower observation and calculation. The results showed high correlation coefficient as 0.69 and 0.74.

증발산은 토양 표면에서 일어나는 증발 과정과 식물의 광합성 작용으로 인해 일어나는 증산 작용을 포함하는 수문기상인자로 외부 환경에 민감하게 작용한다. 현재 국내외에서는 이를 정확하게 관측하여 활용하기 위해 증발접시(evaporation pan), 침루계(lysimeter) 등을 이용하여 실측하거나 Eddy covariance technique, Bowen ratio method 등을 이용하여 경험적으로 산정하고 있으나 공간적인 제약이 따른다. 따라서 본 연구에서는 Terra 인공위성에 탑재된 Moderate Resolution Imaging Spectroradiometer (MODIS) 다중분광 센서를 이용, 원격탐사 기술을 적용함으로써 이러한 지상 관측의 단점을 보완하고자 하였다. 이전 연구들에서 소개가 되었던 원격탐사 기반 증발산 산정 모형을 개선하여 별도의 외부 입력자료 없이 MODIS 위성 이미지 자료만을 이용, 우리나라의 지역적 특성을 반영한 Penman-Monteith 기반 증발산을 산정하였다. 유량조사사업단에서 운영 및 관리하고 있는 설마천/청미천 플럭스 타워의 증발산 관측치와 MODIS 기반 증발산 산정값과의 비교를 통해 각각 0.69, 0.74의 높은 상관계수를 보여 산정 방법의 적용성을 검증하였다.

Keywords

References

  1. MODIS website(http://modis.gsfc.nasa.gov/)
  2. NASA, 1999, The Earth Science Enterprise website (http://www.earth.nasa.gov/)
  3. United States Geological Survey(USGS) website (http://www.usgs.gov/)
  4. 권효정, 이정훈, 이연길, 이진원, 정성원, 김준, 2009. 설마천 유역의 혼효림에서 관측된 증발산의 계절변화, 한국농림기상학회지, 11(1): 39-47. https://doi.org/10.5532/KJAFM.2009.11.1.039
  5. 김형수, 2010. 설마천 유역의 증발산량 산정, 인하대학교.
  6. 박성빈, 2009. 복사 결합된 Penman-Moneith 복합방정식에 근거한 한반도 산림과 농경지의 증발산에 관한 이해. 연세대학교.
  7. 이희춘, 이방용, 김준, 심재설, 2004. 이어도 해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측, Ocean and Polar Research, 26(2): 145-154. https://doi.org/10.4217/OPR.2004.26.2.145
  8. 정승택, 장근창, 강신규, 김준, H. Kondo, M. Gamo, J. Asanuma, N. Saigusa, S. Wang, S. Han, 2009. 동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가, 한국농림기상학회지, 11(4): 174-184. https://doi.org/10.5532/KJAFM.2009.11.4.174
  9. 최민하, 황교택, 김태웅, 2011. Landsat 인공위성 이미지를 이용한 경안천 유역 증발산의 생장기와 휴면기 분포 특성 분석, 한국토목학회논문집, 31(1B): 29-36.
  10. 허유미, 최민하, 2011. 해남 플럭스 타워 지점에서의 Advanced Microwave Scanning Radiometer E 토양수분자료의 검증, 대한원격탐사학회지, 27(2): 131-140. https://doi.org/10.7780/kjrs.2011.27.2.131
  11. 홍진규, 이희춘, 김준, 김백조, 조천호, 이성주, 2003. FK KoFlux 관측지에서의 지역 규모 열 플럭스의 추정: 타워 관측에서 MM5 중규모 모형까지, 한국농림기상학회지, 5(2): 138-149.
  12. Allen, R.G., I.A. Walter, R.L. Elliott, T.A. Howell, D. Itenfisu, M.E. Jensen, and R.L. Snyder, 2005. The ASCE standardized reference evapotranspiration equation, American Society of Civil Engineers, Reston, V.A.
  13. Allen, R.G., M. Tasumi, and R. Trezza, 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model, Journal of Irrigation and Drainage Engineering, American Society of Civil Engineers, 133(4): 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
  14. Allen, R.G., M. Tasumi, A. Morse, R. Trezza, J.L. Wright, W. Bastiaanssen, W. Kramber, I. Lorite, and C.W. Robison, 2007b. Satellitebased energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications, Journal of Irrigation and Drainage Engineering, American Society of Civil Engineers, 133(4): 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
  15. Brutsaert, W., 1975. On a derivable formula for longwave radiation from clear skies, Water Resources Research, 11: 742-744. https://doi.org/10.1029/WR011i005p00742
  16. Choi, M., J.M. Jacobs, and W.P. Kustas, 2008. Assessment of clear and cloudy sky parameterizations for daily downwelling longwave radiation over different land surfaces in Florida, USA, Geophysical Research Letters, 35.
  17. Choi, M., W.P. Kustas, M.C. Anderson, R.G. Allen, F. Li, and J.H. Kjaersgaard, 2009. An intercomparison of three remote sensingbased surface energy balance algorithms over a corn and soybean production region(IOWA, U.S.) during SMACEX, Agricultural and Forest Meteorology, 149(12): 2082-2097. https://doi.org/10.1016/j.agrformet.2009.07.002
  18. Cleugh, H.A., R. Leuning, Q. Mu, and S.W. Running, 2007. Regional evaporation estimaters from flux tower and MODIS satellite data, Remote Sensing of Environment, 106: 285-304. https://doi.org/10.1016/j.rse.2006.07.007
  19. Dang, Q.L., H.A. Margolis, M.R. Coyea, M. Sy, and G.J. Collatz, 1997. Regulation of branch-level gas exchange of boreal trees: Roles of shoot water potential and vapor pressure difference, Tree Physiology, 17: 521-535. https://doi.org/10.1093/treephys/17.8-9.521
  20. Goulden, M.L., S.C. Wofsy, J.W. Harden, S.E. Trumbore, P.M. Crill, S.T. Gower, T. Fries, B.C. Daube, S.M. Fan, D.J. Sutton, A. Bazzaz, and J.W. Munger, 1998. Sensitivity of boreal forest carbon balance to soil thaw, Science, 279: 214-217. https://doi.org/10.1126/science.279.5348.214
  21. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83: 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
  22. Huete, A.R., K. Didan, Y.E. Shimabukuro, P. Ratana, S.R. Saleska, L.R. Hutyra, W. Yang, R.R. Nemani, and R. Myneni, 2006. Amazon rainforests green-up with sunlight in dry season, Geophysical Research Letters, 33.
  23. IPCC, 2007. Climate Change 2007: The Physical Scientific Basis, Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Clamate Change, Summary for Policymakers. Cambridge University Press, Cambridge, UK, pp. 996.
  24. Jang, K., S. Kang, H. Kim, and H. Kwon, 2009. Evaluation of shortwave irradiance and evapotranspiration derived from moderate resolution imaging spectroradiometer (MODIS), Asia-Pacific Journal of Atmospheric Sciences, 45: 233-246.
  25. Jarvis, P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos, Trans. R. Soc. London, 273: 593-610. https://doi.org/10.1098/rstb.1976.0035
  26. Jones, H.G., 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology.
  27. Karma, J.D., T.R. McVicar, and M.F. McCabe, 2008. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surveys in Geophysics, 29: 421-469. https://doi.org/10.1007/s10712-008-9037-z
  28. Kawamitsu, Y., S. Yoda, and W. Agata, 1993. Humidity pretreatment affects the responses of stomata and CO2 assimilation to vapor pressure difference in C3 and C4 plants, Plant and Cell Physiology, 34: 113-119.
  29. Kim, J., D. Lee, J. Hong, S. Kang, S.J. Kim, S.K. Moon, J.H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, and B.L. Lee, 2006. HydroKorea and CarboKorea: Cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea, Ecological Research, 21: 881-889. https://doi.org/10.1007/s11284-006-0055-3
  30. Korea Institute of Construction Technology, 2006. Operation and research on the hydrological characteristics of the experimental catchment. Korea Institute of Construction Technology 2006-062, 182.
  31. Landsberg, J.J. and S.T. Gower, 1997. Applications of Physiological Ecology to Forest Management. San Diego, CA: Academic Press.
  32. Leuning, R., 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant, Cell and Environment, 18: 339-355. https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
  33. Marsden, B.J., V.J. Lieffers, and J.J. Zwiazek, 1996. The effect of humidity on photosynthesis and water relations of white spruce seedlings during the early establishment phase, Canadian Journal of Forest Research, 26: 1015- 1021. https://doi.org/10.1139/x26-112
  34. Misson, L., J.A. Panek, and A.H. Goldstein, 2004. A comparison of three approaches to modeling leaf gas exchange in annually droughtstressed ponderosa pine forests, Tree Physiology, 24: 529-541. https://doi.org/10.1093/treephys/24.5.529
  35. Mu, Q., F.A. Heinsch, M. Zaho, and S.W. Running, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111: 519-536. https://doi.org/10.1016/j.rse.2007.04.015
  36. Oren, R., J.S. Sperry, G.G. Katul, D.E. Pataki, B.E. Ewers, N. Phillips, and K.V.R. Schafer, 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit, Plant, Cell and Environment, 22: 1515-1526. https://doi.org/10.1046/j.1365-3040.1999.00513.x
  37. Sandford, A.P., and P.G. Jarvis, 1986. Stomatal responses to humidity in selected conifers, Tree Physiology, 2: 89-103. https://doi.org/10.1093/treephys/2.1-2-3.89
  38. Schulze, E.D., F.M. Kelliher, C. Korner, J. Lloyd, and R. Leuning, 1994. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise, Annual Review of Ecology and Systematics, 25: 629-660. https://doi.org/10.1146/annurev.es.25.110194.003213
  39. Sumner, D.M. and J.M. Jacobs, 2005. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration, Journal of Hydrology, 308:81-104. https://doi.org/10.1016/j.jhydrol.2004.10.023
  40. Twine, T.E., W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, and M.L. Wesely, 2000. Correcting eddy-covariance flux underestimates over grassland, Agricultural Forest and Meteorology, 103: 279-300. https://doi.org/10.1016/S0168-1923(00)00123-4
  41. Van De Griend, A.A. and M. Owe, 1994. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions, Water Resources Research, 30: 181-188. https://doi.org/10.1029/93WR02747
  42. Wallace J.S. and C.J. Holwill, 1997. Soil evaporation from tiger-bush in south-west Niger, Journal of Hydrology, 188-189: 443-452. https://doi.org/10.1016/S0022-1694(96)03186-1
  43. Xu, L. and D. Baldocchi, 2002. Seasonal variations in Carbon, water and energy fluxes in an Oak/Grass Savanna and in Photosynthetic Capacity of Oak Leaf in California, American Geophysical Union, Fall Meeting 2002.

Cited by

  1. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.227
  2. MODIS 인공위성 이미지를 이용한 Priestley-Taylor 기반 공간 잠재 증발산 산정: 낙동강 유역을 중심으로 vol.28, pp.5, 2012, https://doi.org/10.7780/kjrs.2012.28.5.5
  3. 인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구 vol.51, pp.3, 2018, https://doi.org/10.3741/jkwra.2018.51.3.273
  4. 수자원분야의 위성영상 활용 현황과 전망 vol.51, pp.1, 2012, https://doi.org/10.11614/ksl.2018.51.1.105
  5. Comparison of Actual Evapotranspiration Amounts Estimated Using Water Balance and Eddy-Covariance Methods: Applications to Seolmacheon and Cheongmicheon Basins vol.21, pp.2, 2021, https://doi.org/10.9798/kosham.2021.21.2.171